Solid-State Electrolytes for Lithium–Sulfur Batteries: Challenges, Progress, and Strategies
Abstract
:1. Introduction
2. Principles and Challenges of Lithium–Sulfur Batteries
2.1. The Composition and Working Principle of Lithium–Sulfur Battery
2.2. The Challenges of Lithium–Sulfur Solid Electrolytes
2.2.1. Low Ionic Conductivity
2.2.2. Interface Incompatibility
2.2.3. Chemical/Electrochemical Stability
2.2.4. Lithium Dendrite
3. Polymer Electrolytes
3.1. Gel Polymer Electrolyte/Quasi Solid Electrolytes
3.1.1. PVDF Base
3.1.2. PEO Base
3.1.3. PMMA Base
3.2. Solid Polymer Electrolytes
4. Inorganic Solid Electrolytes
4.1. Oxide Base
4.2. Sulfide Base
5. Composite Electrolytes
5.1. Inert Fillers
5.2. Active Filler
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, W.; Zheng, W.; Xu, J.; Tian, C.; Han, K.; Sun, W.; Xiao, S. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries. ACS Nano 2021, 15, 7114–7130. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yu, F.; Hua, J.; Tang, W.; Yang, C.; Hu, S.; Zhao, S.; Zhang, X.; Xin, Z.; Niu, D. Donor dominated triazine-based microporous polymer as a polysulfide immobilizer and catalyst for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 392, 123694. [Google Scholar] [CrossRef]
- Yang, L.; Li, Q.; Wang, Y.; Chen, Y.; Guo, X.; Wu, Z.; Chen, G.; Zhong, B.; Xiang, W.; Zhong, Y. A review of cathode materials in lithium-sulfur batteries. Ionics 2020, 26, 5299–5318. [Google Scholar] [CrossRef]
- Wang, P.; Xi, B.J.; Huang, M.; Chen, W.H.; Feng, J.K.; Xiong, S.L. Emerging catalysts to promote kinetics of lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2002893. [Google Scholar] [CrossRef]
- Ding, B.; Wang, J.; Fan, Z.; Chen, S.; Lin, Q.; Lu, X.; Dou, H.; Kumar Nanjundan, A.; Yushin, G.; Zhang, X.; et al. Solid-state lithium–sulfur batteries: Advances, challenges and perspectives. Mater. Today 2020, 40, 114–131. [Google Scholar] [CrossRef]
- Yuan, S.; Bao, J.L.; Li, C.; Xia, Y.; Truhlar, D.G.; Wang, Y. Dual lithiophilic structure for uniform li deposition. ACS Appl. Mater. Interfaces 2019, 11, 10616–10623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhu, M.; Zhong, Y.; Han, T.; Sun, B.; Zhu, S.; Gu, C.; Kong, L.; Zhang, H.; Liu, J. A novel sulfur@void@hydrogel yolk-shell particle with a high sulfur content for volume-accommodable and polysulfide-adsorptive lithium-sulfur battery cathodes. Nanotechnology 2020, 31, 455402. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wei, H.; Zhai, X.; Wang, F.; Ren, X.; Xiong, Y.; Akiyoshi, O.; Pan, K.; Ren, F.; Wei, S. Graphene-based interlayer for high-performance lithium–sulfur batteries: A review. Mater. Des. 2021, 211, 110171. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.; Li, Q.; Wang, Y.; Chen, Y.; Wu, Z.; Liu, Y.; Wang, G.; Zhong, B.; Xiang, W.; et al. Research progress on improving the sulfur conversion efficiency on the sulfur cathode side in lithium–sulfur batteries. Ind. Eng. Chem. Res. 2020, 59, 20979–21000. [Google Scholar] [CrossRef]
- Liu, F.; Zong, C.; He, L.; Li, Z.; Hong, B.; Wang, M.; Zhang, Z.; Lai, Y.; Li, J. Improving the electrochemical performance of lithium-sulfur batteries by interface modification with a bifunctional electrolyte additive. Chem. Eng. J 2022, 443, 136489. [Google Scholar] [CrossRef]
- De Luna, Y.; Abdullah, M.; Dimassi, S.N.; Bensalah, N. All-solid lithium-sulfur batteries: Present situation and future progress. Ionics 2021, 27, 4937–4960. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, S.Q.; Yan, G.J.; Liu, X.N.; Zhang, X.J.; Feng, Y.; Shi, J.J.; Qu, X.W. A squaraine-linked zwitterionic covalent organic framework nanosheets enhanced poly(ethylene oxide) composite polymer electrolyte for quasi-solid-state Li-S batteries. Acs Appl. Energy Mater. 2022, 5, 2495–2504. [Google Scholar] [CrossRef]
- Zhai, P.F.; Peng, N.; Sun, Z.Y.; Wu, W.J.; Kou, W.J.; Cui, G.S.; Zhao, K.; Wang, J.T. Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium-sulfur battery. J. Mater. Chem. A 2020, 8, 23344–23353. [Google Scholar] [CrossRef]
- Benabed, Y.; Rioux, M.; Rousselot, S.; Hautier, G.; Dollé, M. Assessing the electrochemical stability window of nasicon-type solid electrolytes. Front. Energy Res. 2021, 9, 230. [Google Scholar] [CrossRef]
- Wang, W.P.; Zhang, J.; Chou, J.; Yin, Y.X.; You, Y.; Xin, S.; Guo, Y.G. Solidifying cathode–electrolyte interface for lithium–sulfur batteries. Adv. Energy Mater. 2020, 11, 2000791. [Google Scholar] [CrossRef]
- Cao, D.X.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.Y.; Zhu, H.L. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and sharacterizations. Matter 2020, 3, 57–94. [Google Scholar] [CrossRef]
- Feng, S.; Fu, Z.H.; Chen, X.; Zhang, Q. A review on theoretical models for lithium-sulfur battery cathodes. Infomat 2022, 4, e12304. [Google Scholar] [CrossRef]
- Wu, D.S.; Shi, F.; Zhou, G.; Zu, C.; Liu, C.; Liu, K.; Liu, Y.; Wang, J.; Peng, Y.; Cui, Y. Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. Energy Storage Mater. 2018, 13, 241–246. [Google Scholar] [CrossRef]
- Deng, C.; Wang, Z.; Wang, S.; Yu, J.; Martin, D.J.; Nanjundan, A.K.; Yamauchi, Y. Double-layered modified separators as shuttle suppressing interlayers for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2018, 11, 541. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wu, N. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review. Energy Sci. Eng. 2022, 10, 1643–1671. [Google Scholar] [CrossRef]
- Su, S.; Ma, J.; Zhao, L.; Lin, K.; Li, Q.; Lv, S.; Kang, F.; He, Y.B. Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 2021, 3, 866–894. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, L.; Zheng, P.; Sun, J.; Liu, C.; Chai, J.; Li, X.; Zheng, Y.; Liu, Z. Recent advances in stability issues of inorganic solid electrolytes and composite solid electrolytes for all-solid-state batteries. Chem. Rec. 2022, 14, e202200116. [Google Scholar] [CrossRef]
- Wang, S.; Fang, R.; Li, Y.; Liu, Y.; Xin, C.; Richter, F.H.; Nan, C.-W. Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. J. Materiomics 2020, 7, 209–218. [Google Scholar] [CrossRef]
- Tian, H.K.; Liu, Z.; Ji, Y.Z.; Chen, L.Q.; Qi, Y. Interfacial electronic properties dictate li dendrite growth in solid electrolytes. Chem. Mater. 2019, 31, 7351–7359. [Google Scholar] [CrossRef]
- Lv, Q.; Jiang, Y.; Wang, B.; Chen, Y.; Jin, F.; Wu, B.; Ren, H.; Zhang, N.; Xu, R.; Li, Y.; et al. Suppressing lithium dendrites within inorganic solid-state electrolytes. Cell Rep. Phys. Sci. 2022, 3, 100706. [Google Scholar] [CrossRef]
- Ren, Y.; Shen, Y.; Lin, Y.; Nan, C.-W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 2015, 57, 30. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, K.; Liu, M.; Chen, S.; Liu, X.; Yang, B.; Wang, Z.; Huang, W.; Song, Z.; Xue, S.; et al. PIM-1 as a multifunctional framework to enable high-performance solid-state lithium–sulfur batteries. Adv. Funct. Mater. 2021, 31, 2104830. [Google Scholar] [CrossRef]
- Lin, Y.; Pitcheri, R.; Zhu, J.; Jiao, C.; Guo, Y.; Li, J.; Qiu, Y. Electrospun PVDF/PSSLi ionomer films as a functional separator for lithium-sulfur batteries. J. Alloys Compd. 2019, 785, 627–633. [Google Scholar] [CrossRef]
- Wang, X.L.; Hao, X.J.; Xia, Y.; Liang, Y.F.; Xia, X.H.; Tu, J.P. A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries. J. Membr. Sci. 2019, 582, 37–47. [Google Scholar] [CrossRef]
- Liang, X.; Wang, L.L.; Wang, Y.; Liu, Y.C.; Sun, Y.; Xiang, H.F. Constructing multi-functional composite separator of PVDF-HFP/h-BN supported Co-CNF membrane for lithium-sulfur batteries. Sustain. Energy Fuels 2022, 6, 440–448. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.G.; Lin, Z.F.; Yao, S.W. A free-standing PAN/PMMA/rGO carbon paper as an effective interlayer for high performance lithium-sulfur batteries. Therm. Sci. 2020, 24, 2485–2490. [Google Scholar] [CrossRef]
- Meisner, Q.J.; Jiang, S.S.; Cao, P.F.; Glossmann, T.; Hintennach, A.; Zhang, Z.C. An in situ generated polymer electrolyte via anionic ring-opening polymerization for lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 25927–25933. [Google Scholar] [CrossRef]
- Qian, J.; Jin, B.; Li, Y.; Zhan, X.; Hou, Y.; Zhang, Q. Research progress on gel polymer electrolytes for lithium-sulfur batteries. J. Energy Chem. 2021, 56, 420–437. [Google Scholar] [CrossRef]
- Han, D.D.; Liu, S.; Liu, Y.T.; Zhang, Z.; Li, G.R.; Gao, X.P. Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium-sulfur battery. J. Mater. Chem. A 2018, 6, 18627–18634. [Google Scholar] [CrossRef]
- Wang, X.; Hao, X.; Cai, D.; Zhang, S.; Xia, X.; Tu, J. An ultraviolet polymerized 3D gel polymer electrolyte based on multi-walled carbon nanotubes doped double polymer matrices for lithium-sulfur batteries. Chem. Eng. J. 2020, 382, 122714. [Google Scholar] [CrossRef]
- Lu, X.; Wu, H.P.; Kong, D.J.; Li, X.R.; Shen, L.; Lu, Y.F. Facilitating lithium-ion conduction in gel polymer electrolyte by metal-organic frameworks. Acs Mater. Lett. 2020, 2, 1435–1441. [Google Scholar]
- Zhang, Z.; Huang, Y.; Li, C.; Li, X. Metal-organic framework-supported poly(ethylene oxide) composite gel polymer electrolytes for high-performance lithium/sodium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 37262–37272. [Google Scholar] [CrossRef]
- Han, D.D.; Wang, Z.Y.; Pan, G.L.; Gao, X.P. Metal-organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium-sulfur battery. ACS Appl. Mater. Interfaces 2019, 11, 18427–18435. [Google Scholar]
- Xia, Y.; Liang, Y.F.; Xie, D.; Wang, X.L.; Zhang, S.Z.; Xia, X.H.; Gu, C.D.; Tu, J.P. A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chem. Eng. J. 2019, 358, 1047–1053. [Google Scholar] [CrossRef]
- Han, J.H.; Lee, J.Y.; Suh, D.H.; Hong, Y.T.; Kim, T.H. Electrode-impregnable and cross-linkable poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock polymer electrolytes with high Ionic conductivity and a large voltage window for flexible solid-state supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 33913–33924. [Google Scholar] [CrossRef]
- Wang, X.; Hao, X.; Hengjing, Z.; Xia, X.; Tu, J. 3D ultraviolet polymerized electrolyte based on PEO modified PVDF-HFP electrospun membrane for high-performance lithium-sulfur batteries. Electrochim. Acta 2020, 329, 135108. [Google Scholar] [CrossRef]
- Yang, W.; Yang, W.; Feng, J.N.; Ma, Z.P.; Shao, G.J. High capacity and cycle stability rechargeable lithium-sulfur batteries by sandwiched gel polymer electrolyte. Electrochim. Acta 2016, 210, 71–78. [Google Scholar] [CrossRef]
- Sheng, J.Z.; Zhang, Q.; Sun, C.B.; Wang, J.X.; Zhong, X.W.; Chen, B.; Li, C.; Gao, R.H.; Han, Z.Y.; Zhou, G.M. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2203272. [Google Scholar] [CrossRef]
- Chen, G.H.; Zhang, F.; Zhou, Z.M.; Li, J.R.; Tang, Y.B. A flexible dual-Ion battery based on PVDF-HFP-Modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 2018, 8, 1801219. [Google Scholar] [CrossRef]
- Hosseinioun, A.; Nurnberg, P.; Schonhoff, M.; Diddens, D.; Paillard, E. Improved lithium ion dynamics in crosslinked PMMA gel polymer electrolyte. RSC Adv. 2019, 9, 27574–27582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Xiong, H.G.; Yang, Y.F.; Shao, H.X. Nano-sized oxide filled composite PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium and sodium batteries. Solid State Ionics 2018, 326, 136–144. [Google Scholar]
- Kang, S.S.; Yang, Z.L.; Yang, C.X.; Zhao, S.; Wu, N.N.; Liu, F.L.; Chen, X.T.; Shi, B. Co-blending based tribasic PEO-PS-PMMA gel polymer electrolyte for quasi-solid-state lithium metal batteries. Ionics 2021, 27, 2037–2043. [Google Scholar] [CrossRef]
- Liu, C.; Tang, X.; Wang, Y.; Sacci, R.L.; Bras, W.; Keum, J.K.; Chen, X.C. Ionic conductivity enhancement of polymer electrolytes by directed crystallization. ACS Macro Lett. 2022, 11, 595–602. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, N.; Qu, W.; Yang, C.; Li, L.; Wu, F.; Chen, R. Vertical channels design for polymer electrolyte to enhance mechanical strength and ion conductivity. ACS Appl. Mater. Interfaces 2021, 13, 42957–42965. [Google Scholar] [CrossRef]
- Wan, J.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, Y.; Shi, Z.; Zhou, X.; Xue, Z. Disulfide metathesis-assisted lithium-ion conduction for PEO-based polymer electrolytes. ACS Macro Lett. 2022, 11, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Yu, Y.; Wu, R.; Tyagi, A.; Zhuang, M.; Ding, Y.; Abidi, I.H.; Wu, H.; Wang, F.; Luo, Z. Shuttle suppression by polymer-sealed graphene-coated polypropylene separator. ACS Appl. Mater. Interfaces 2018, 10, 5534–5542. [Google Scholar] [CrossRef]
- Fan, Y.; Niu, Z.; Zhang, F.; Zhang, R.; Zhao, Y.; Lu, G. Suppressing the shuttle effect in lithium-sulfur batteries by a UiO-66-modified polypropylene separator. ACS Omega 2019, 4, 10328–10335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Lin, L.; Zhang, C.; Liu, L.; Li, Y.; Qiao, Z.; Lin, J.; Wei, Q.; Wang, L.; Xie, Q.; et al. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 2022, 9, e2106004. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.l.; Jiang, J.h.; Lu, J.h.; Wang, A.b.; Jin, Z.q.; Wang, W.k. Bifunctional polymer electrolyte with higher lithium-ion transference number for lithium-sulfur batteries. J. Cent. South Univ. 2022, 28, 3681–3693. [Google Scholar] [CrossRef]
- Zhuo, R.A.; You, L.Z.; Hai, Y.Z.; Yu, X.H.; Nan, T.C. Enhanced cycling performance of all-solid-state Li-S battery enabled by PVP-blended PEO-based double-layer electrolyte. Chemistry 2022, 28, e202200543. [Google Scholar]
- Jiang, W.; Dong, L.; Liu, S.; Ai, B.; Zhao, S.; Zhang, W.; Pan, K.; Zhang, L. Improvement of the interface between the lithium anode and a garnet-type solid electrolyte of lithium batteries using an aluminum-nitride layer. Nanomaterials 2022, 12, 2023. [Google Scholar] [CrossRef]
- Cai, M.; Jin, J.; Xiu, T.; Song, Z.; Badding, M.E.; Wen, Z. In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface. Energy Storage Mater. 2022, 47, 61–69. [Google Scholar] [CrossRef]
- Huang, B.; Hua, H.; Lai, P.; Shen, X.; Li, R.; He, Z.; Zhang, P.; Zhao, J. Constructing ion-selective coating layer with lithium ion conductor LLZO and binder Li-Nafion for separator used in lithium-sulfur batteries. ChemElectroChem 2022, 9, e202200416. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.; Tang, Z.; Mei, Y.; Xiang, X.; Deng, J. Study on the suppression of lithium dendrites based on solid electrolyte Li7La3Zr2O12 with annealing treatment of Al interlayer. J. Alloys Compd. 2022, 904, 163908. [Google Scholar] [CrossRef]
- He, X.; Yan, F.; Gao, M.; Shi, Y.; Ge, G.; Shen, B.; Zhai, J. Cu-doped alloy layer guiding uniform li deposition on a Li-LLZO interface under high current density. ACS Appl. Mater. Interfaces 2021, 13, 42212–42219. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Huang, L.; Lv, W.; He, Y.B. A highly efficient ion and electron conductive interlayer to achieve low self-discharge of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Li, W.W.; Wang, Q.; Jin, J.; Li, Y.P.; Wu, M.F.; Wen, Z.Y. Constructing dual interfacial modification by synergetic electronic and ionic conductors: Toward high-performance LAGP-based Li-S batteries. Energy Storage Mater. 2019, 23, 299–305. [Google Scholar] [CrossRef]
- Wang, M.Y.; Han, S.H.; Niu, C.Q.; Chao, Z.S.; Luo, W.B.; Jin, H.G.; Yi, W.J.; Fan, Z.Q.; Fan, J.C. Perovskite lithium lanthanum titanate-modified separator as both adsorbent and converter of soluble polysulfides toward high-performance Li-S battery. Acs Sustain. Chem. Eng. 2020, 8, 16477–16492. [Google Scholar] [CrossRef]
- Zhu, P.; Yan, C.; Zhu, J.; Zang, J.; Li, Y.; Jia, H.; Dong, X.; Du, Z.; Zhang, C.; Wu, N.; et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 2019, 17, 220–225. [Google Scholar] [CrossRef]
- Wan, H.L.; Liu, S.F.; Deng, T.; Xu, J.J.; Zhang, J.X.; He, X.Z.; Ji, X.; Yao, X.Y.; Wang, C.S. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. Acs Energy Lett. 2021, 6, 862–868. [Google Scholar] [CrossRef]
- Xia, Y.; Li, J.; Zhang, J.; Zhou, X.; Huang, H.; He, X.; Gan, Y.; Xiao, Z.; Zhang, W. Yttrium stabilized argyrodite solid electrolyte with enhanced ionic conductivity and interfacial stability for all-solid-state batteries. J. Power Sources 2022, 543, 231846. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Liu, S.; Xin, C.; Xue, C.; Richter, F.; Li, L.; Fan, L.; Lin, Y.; Shen, Y.; et al. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. J. Materiomics 2020, 6, 70–76. [Google Scholar] [CrossRef]
- Umeshbabu, E.; Zheng, B.; Zhu, J.; Wang, H.; Li, Y.; Yang, Y. Stable cycling lithium-sulfur solid batteries with enhanced Li/Li10GeP2S12 solid electrolyte interface stability. ACS Appl. Mater. Interfaces 2019, 11, 18436–18447. [Google Scholar] [CrossRef]
- Zhao, F.P.; Sun, Q.; Yu, C.; Zhang, S.M.; Adair, K.; Wang, S.Z.; Liu, Y.L.; Zhao, Y.; Liang, J.W.; Wang, C.H.; et al. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state li metal batteries. Acs Energy Lett. 2020, 5, 1035–1043. [Google Scholar] [CrossRef]
- Delgado Rosero, M.I.; Jurado Meneses, N.M.; Uribe Kaffure, R. Thermal properties of composite polymer electrolytes poly(ethylene oxide)/sodium trifluoroacetate/aluminum oxide (PEO)10CF3COONa + x wt.% Al2O3. Materials 2019, 12, 1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.-W.; Lee, S.-H.; Kim, Y.-N.; Oh, J.-M. Preparation of a high-purity ultrafine α-Al2O3 powder and characterization of an Al2O3-coated PE separator for lithium-ion batteries. Powder Technol. 2017, 320, 125–132. [Google Scholar] [CrossRef]
- Lin, D.; Liu, W.; Liu, Y.; Lee, H.R.; Hsu, P.C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Yuen, P.Y.; Liu, Y.; Liu, W.; Liu, N.; Dauskardt, R.H.; Cui, Y. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv Mater. 2018, 30, e1802661. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.C.; Li, T.Y.; Deng, Y.R.; Tang, W.H.; Wang, X.D.; Yang, J.L.; Liu, Q.; Zhang, L.; Wang, Q.; Liu, R.P. 3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium–sulfur batteries. Rare Met. 2022, 41, 2834–2843. [Google Scholar] [CrossRef]
- Xu, H.; Huang, S.; Qian, J.; Liu, S.; Li, L.; Zhao, X.; Zhang, W. Safe solid-state PEO/TPU/LLZO nano network polymer composite gel electrolyte for solid state lithium batteries. Colloids Surf. A 2022, 653, 130040. [Google Scholar] [CrossRef]
- Xie, P.; Yang, R.; Zhou, Y.; Zhang, B.; Tian, X. Rationally designing composite gel polymer electrolyte enables high sulfur utilization and stable lithium anode. Chem. Eng. J. 2022, 450, 138195. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Zhang, M.; Li, Y.; Chu, P.K.; Guo, X.; Di, Z.; Wang, X.; Li, H. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28, 447–454. [Google Scholar] [CrossRef]
- Li, H.; Liu, W.; Yang, X.; Xiao, J.; Li, Y.; Sun, L.; Ren, X.; Zhang, P.; Mi, H. Fluoroethylene carbonate-Li-ion enabling composite solid-state electrolyte and lithium metal interface self-healing for dendrite-free lithium deposition. Chem. Eng. J. 2021, 408, 127254. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Wang, T.; Fan, L.Z. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 7069–7078. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Zheng, Z.; Ruan, W.; Zhang, M. Flexible quasi-solid-state composite electrolyte of poly (propylene glycol)-co-pentaerythritol triacry-late/Li1.5Al0.5Ge1.5(PO4)3 for high-performance lithium-sulfur battery. Materials 2021, 14, 1979. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhu, P.H.; Fang, Q.X.; Jing, M.X.; Shen, X.Q.; Yang, L.Z. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim. Acta 2018, 292, 718–726. [Google Scholar] [CrossRef]
- Qian, J.; Wang, S.; Li, Y.; Zhang, M.L.; Wang, F.J.; Zhao, Y.Y.; Sun, Q.; Li, L.; Wu, F.; Chen, R.J. Lithium induced Nano-sized copper with exposed lithiophilic surfaces to achieve dense lithium deposition for lithium metal anode. Adv. Funct. Mater. 2021, 31, 2006950. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, X.; Xia, X.; Xu, R.; Zhang, S.; Wu, J.; Liang, Y.; Gu, C.; Tu, J. A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries. Chemistry 2017, 23, 15203–15209. [Google Scholar] [CrossRef]
- Wang, X.; Zhai, H.; Qie, B.; Cheng, Q.; Li, A.; Borovilas, J.; Xu, B.; Shi, C.; Jin, T.; Liao, X.; et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy 2019, 60, 205–212. [Google Scholar] [CrossRef]
- Tan, J.; Li, X.; Fang, Z.; Zhu, X.; Ye, C.; Ye, M.; Shen, J. Integrating LiF-rich solid electrolyte interphase and in-situ formed gel blocking layer for Li–S battery. J. Power Sources 2022, 548, 232035. [Google Scholar] [CrossRef]
- Yan, C.; Zhou, Y.; Cheng, H.; Orenstein, R.; Zhu, P.; Yildiz, O.; Bradford, P.; Jur, J.; Wu, N.; Dirican, M.; et al. Interconnected cathode-electrolyte double-layer enabling continuous Li-ion conduction throughout solid-state Li-S battery. Energy Storage Mater. 2022, 44, 136–144. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Y.; Ning, Y.; Huang, D.; Lan, L.; Li, S. Quasi-solid-state lithium-sulfur batteries assembled by composite polymer electrolyte and nitrogen doped porous carbon fiber composite cathode. Nanomaterials 2022, 12, 2614. [Google Scholar] [CrossRef]
Composites | Type | Ionic Conductivity (S cm−1) | Initial Capacity (mAh g−1) (Current Density) | End of Capacity (mAh g−1) (Cycle Number) | Reference |
---|---|---|---|---|---|
PDA–PVDF | GPE | / | 1215.4 (0.1 C) | 868.8 (200) | [35] |
PET-DA/PVDF-HFP/MWCNTs | GPE | 1.1 × 10−3 | 704.5 (0.5 C) | 608.8 (300) | [36] |
Mg-MOF-74/PVDF | GPE | 6.72 × 10–4 | 996.7 (1 C) | 778.4 (250) | [39] |
PVDF-HFP/PETT/Ester monomer | GPE | 6.61 × 10–4 | 601 (0.5 C) | 326.94 (300) | [40] |
PEO/PVDF-HFP/PET-DA | GPE | 9.64 × 10−4 | 543 (2 C) | 473 (300) | [42] |
PVDF/PMMA/PVDF | GPE | 1.95 × 10−3 | 1173.6 (1000 mA g−1) | 523.1 (300) | [43] |
PEO/PAN/LiTFSI | GPE | 1.63 × 10−5 | 1200 (0.1 C) | 803.1 (75) | [44] |
LiPF6/FEC/PE | GPE | / | 930 (0.5 C) | 800 (800) | [87] |
PEO/PFA | SPE | / | 1128.4 (0.1 C) | 798.6 (20) | [53] |
UiO-66/PVDF | SPE | / | 1032 (0.5 C) | 586 (500) | [54] |
P(VDF-HFP) (PDDA-TFSI-P(VDF-HFP) | SPE | 1.76 × 10−3 | 1241 (0.2 C) | 813 (200) | [56] |
PEO-10%HUT4/LiTFSI | SPE | 8.2 × 10−6 | 640 (1 C) | 498 (500) | [13] |
Graphene/Ti2(SO4)3/Li1.3Al0.3Ti1.7(PO4)3 | Oxide based ISE | 3.09 × 10–4 | 779 (1 C) | 671 (500) | [63] |
LLAZO/LLAZO/CNF | Oxide based ISE | 2.51 × 10–4 | 1055 (0.2 C) | 939 (50) | [88] |
LiTFSI/PYR13TFSI/Li10GeP2S12 | Sulfide based ISE | 2.04 ×10–3 | 1068 (83.5 mA cm–2) | 868 (25) | [70] |
PTFE/LLZO/PEO | CPE | 5.03 × 10−5 | 655 (0.1 C) | 568 (100) | [76] |
PEO/PAN/LLZO | CPE | 2.01 × 10−3 | 942 (1 C) | 555 (500) | [78] |
PPG-co-PETA/LAGP | CPE | 5.95 × 10−5 | 1508 (0.25 C) | 1109.5 (500) | [82] |
PVDF-HFP/LATP | CPE | 7.41 × 10−4 | 918 (0.05 C) | 458.9 (40) | [85] |
PVDF/LiClO4/LATP | CPE | 8.07 × 10−5 | 620.52 (0.5 C) | 202.3 (500) | [89] |
Electrolyte Type | Advantages | Challenges | Strategies |
---|---|---|---|
Polymer electrolytes |
|
|
|
Inorganic solid electrolytes |
|
|
|
Organic-inorganic composite electrolyte |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Ye, C.; Mao, D. Solid-State Electrolytes for Lithium–Sulfur Batteries: Challenges, Progress, and Strategies. Nanomaterials 2022, 12, 3612. https://doi.org/10.3390/nano12203612
Zhu Q, Ye C, Mao D. Solid-State Electrolytes for Lithium–Sulfur Batteries: Challenges, Progress, and Strategies. Nanomaterials. 2022; 12(20):3612. https://doi.org/10.3390/nano12203612
Chicago/Turabian StyleZhu, Qiancheng, Chun Ye, and Deyu Mao. 2022. "Solid-State Electrolytes for Lithium–Sulfur Batteries: Challenges, Progress, and Strategies" Nanomaterials 12, no. 20: 3612. https://doi.org/10.3390/nano12203612
APA StyleZhu, Q., Ye, C., & Mao, D. (2022). Solid-State Electrolytes for Lithium–Sulfur Batteries: Challenges, Progress, and Strategies. Nanomaterials, 12(20), 3612. https://doi.org/10.3390/nano12203612