Covalent Organic Frameworks with Ionic Liquid-Moieties (ILCOFs): Structures, Synthesis, and CO2 Conversion
Abstract
:1. Introduction
2. Classification, Structures, and Synthesis of ILCOFs
2.1. ILCOFs with IL Moieties Located on the Main Linkers
2.1.1. Cations Are Located on the Main Linkers
Pyridinium-linked ILCOFs
Imidazolium-linked ILCOFs
Guanidinium-linked ILCOFs
2.1.2. Anions Are Located on the Main Linkers
Spiroborate-linked ILCOFs
Squaraine-linked ILCOFs
2.2. ILCOFs with IL Moieties Located on the Nodes
2.2.1. Guanidinium-noded ILCOFs
2.2.2. Pyridinium-noded ILCOFs
2.2.3. Imidazolium-noded ILCOFs
2.3. ILCOFs with IL Moieties Located on the Side Chains
2.3.1. Cations Are Located on the Side Chains
Imidazolium-grafted ILCOFs
Ammonium-grafted ILCOFs
Phosphonium-grafted ILCOFs
2.3.2. Anions Are Located on the Side Chains
3. CO2 Conversion by ILCOFs
3.1. CO2 Capture
3.2. Reduction of CO2 with Amine
3.3. Cycloaddition of CO2 with Epoxides
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Meteorological Organization. State of the Global Climate 2021 WMO-No. 1290; World Meteorological Organization: Geneva, Switzerland, 2022; Available online: https://library.wmo.int/index.php?lvl=notice_display&id=22080 (accessed on 1 August 2022).
- Chen, S.; Liu, J.; Zhang, Q.; Teng, F.; McLellan, B.C. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew. Sustain. Energy Rev. 2022, 167, 112537. [Google Scholar] [CrossRef]
- Lv, B.; Guo, B.; Zhou, Z.; Jing, G. Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. Environ. Sci. Technol. 2015, 49, 10728–10735. [Google Scholar] [CrossRef]
- Kaur, G.; Kumar, H.; Singla, M. Diverse applications of ionic liquids: A comprehensive review. J. Mol. Liq. 2022, 351, 118556. [Google Scholar] [CrossRef]
- Wang, Y.; He, H.; Wang, C.; Lu, Y.; Dong, K.; Huo, F.; Zhang, S. Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids. JACS Au 2022, 2, 543–561. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhuo, K.; Chen, Y.; Du, Q.; Zhang, S.; Wang, J. Ionic Liquid-Based Redox Active Electrolytes for Supercapacitors. Adv. Funct. Mater. 2022, 32, 2203611. [Google Scholar] [CrossRef]
- Cui, G.; Jiang, K.; Liu, H.; Zhou, Y.; Zhang, Z.; Zhang, R.; Lu, H. Highly efficient CO removal by active cuprous-based ternary deep eutectic solvents [HDEEA][Cl] + CuCl + EG. Sep. Purif. Technol. 2021, 274, 118985. [Google Scholar] [CrossRef]
- Cui, G.; Lyu, S.; Wang, H.; Li, Z.; Zhang, R.; Wang, J. Tuning the structure of pyridinolate-based functional ionic liquids for highly efficient SO2 absorption. Fuel 2021, 303, 121311. [Google Scholar] [CrossRef]
- Zhang, T.; Doert, T.; Wang, H.; Zhang, S.; Ruck, M. Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angew. Chem. Int. Ed. 2021, 60, 22148–22165. [Google Scholar] [CrossRef] [PubMed]
- Seitkalieva, M.M.; Samoylenko, D.E.; Lotsman, K.A.; Rodygin, K.S.; Ananikov, V.P. Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coord. Chem. Rev. 2021, 445, 213982. [Google Scholar] [CrossRef]
- Potdar, M.K.; Kelso, G.F.; Schwarz, L.; Zhang, C.; Hearn, M.T.W. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids. Molecules 2015, 20, 16788–16816. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Zhang, Y.; Ma, J.; Fan, M.; Zhang, S.; Wang, J. Ionic liquids for advanced materials. Mater. Today Nano 2022, 17, 100159. [Google Scholar] [CrossRef]
- Zhuang, W.; Hachem, K.; Bokov, D.; Javed Ansari, M.; Taghvaie Nakhjiri, A. Ionic liquids in pharmaceutical industry: A systematic review on applications and future perspectives. J. Mol. Liq. 2022, 349, 118145. [Google Scholar] [CrossRef]
- Correia, D.M.; Fernandes, L.C.; Fernandes, M.M.; Hermenegildo, B.; Meira, R.M.; Ribeiro, C.; Ribeiro, S.; Reguera, J.; Lanceros-Méndez, S. Ionic Liquid-Based Materials for Biomedical Applications. Nanomaterials 2021, 11, 2401. [Google Scholar] [CrossRef] [PubMed]
- Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 2017, 117, 7132–7189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikfarjam, N.; Ghomi, M.; Agarwal, T.; Hassanpour, M.; Sharifi, E.; Khorsandi, D.; Ali Khan, M.; Rossi, F.; Rossetti, A.; Nazarzadeh Zare, E.; et al. Antimicrobial Ionic Liquid-Based Materials for Biomedical Applications. Adv. Funct. Mater. 2021, 31, 2104148. [Google Scholar] [CrossRef]
- Gong, W.; Chen, Z.; Dong, J.; Liu, Y.; Cui, Y. Chiral Metal–Organic Frameworks. Chem. Rev. 2022, 122, 9078–9144. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Zhou, L.-L.; Dong, Y.-B. Metalated covalent organic frameworks: From synthetic strategies to diverse applications. Chem. Soc. Rev. 2022, 51, 6307–6416. [Google Scholar] [CrossRef]
- Meng, Z.; Mirica, K.A. Covalent organic frameworks as multifunctional materials for chemical detection. Chem. Soc. Rev. 2021, 50, 13498–13558. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Jena, H.S.; Leus, K.; Van Der Voort, P. Covalent triazine frameworks—A sustainable perspective. Green Chem. 2020, 22, 1038–1071. [Google Scholar] [CrossRef]
- Taheri, N.; Dinari, M.; Asgari, M. Recent Applications of Porous Organic Polymers Prepared via Friedel–Crafts Reaction under the Catalysis of AlCl3: A Review. ACS Appl. Polym. Mater. 2022, 4, 6288–6302. [Google Scholar] [CrossRef]
- Zhang, T.; Gregoriou, V.G.; Gasparini, N.; Chochos, C.L. Porous organic polymers in solar cells. Chem. Soc. Rev. 2022, 51, 4465–4483. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.-F.; Xu, S.; Cheng, T.; Wang, S.; Lai, W.-Y.; Huang, W. Porous organic polymers for high-performance supercapacitors. Chem. Soc. Rev. 2022, 51, 3181–3225. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Li, M.; Ma, Q.; Wen, G.; Dou, H.; Ren, B.; Liu, Y.; Wang, X.; Shui, L.; Chen, Z. Porous organic polymers for Li-chemistry-based batteries: Functionalities and characterization studies. Chem. Soc. Rev. 2022, 51, 2917–2938. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Wang, Y.; Zhang, D.; Xiao, Q.; Huang, J.; Liu, Y.-N. Recent progress in porous organic polymers and their application for CO2 capture. Chin. J. Chem. Eng. 2022, 42, 91–103. [Google Scholar] [CrossRef]
- Lu, S.; Liu, Q.; Han, R.; Guo, M.; Shi, J.; Song, C.; Ji, N.; Lu, X.; Ma, D. Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds. J. Environ. Sci. 2021, 105, 184–203. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, R.; Yang, J.; Shuai, Q.; Yuliarto, B.; Kaneti, Y.V.; Yamauchi, Y. Nanoarchitectured porous organic polymers and their environmental applications for removal of toxic metal ions. Chem. Eng. J. 2021, 408, 127991. [Google Scholar] [CrossRef]
- Sun, Q.; Aguila, B.; Song, Y.; Ma, S. Tailored Porous Organic Polymers for Task-Specific Water Purification. Acc. Chem. Res. 2020, 53, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.-H.; Tao, Y.; Ding, X.; Han, B.-H. Porous organic polymers for electrocatalysis. Chem. Soc. Rev. 2022, 51, 761–791. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.-W. Macrocycle-Based Porous Organic Polymers for Separation, Sensing, and Catalysis. Adv. Mater. 2022, 34, 2107401. [Google Scholar] [CrossRef]
- Moayed Mohseni, M.; Jouyandeh, M.; Mohammad Sajadi, S.; Hejna, A.; Habibzadeh, S.; Mohaddespour, A.; Rabiee, N.; Daneshgar, H.; Akhavan, O.; Asadnia, M.; et al. Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chem. Eng. J. 2022, 449, 137700. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, P.; Zhang, X.; Wu, D. Emerging porous organic polymers for biomedical applications. Chem. Soc. Rev. 2022, 51, 1377–1414. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Son, S.; An, J.; Kim, I.; Choi, M.; Kong, N.; Tao, W.; Kim, J.S. Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem. Soc. Rev. 2021, 50, 12883–12896. [Google Scholar] [CrossRef]
- Mendes, R.F.; Figueira, F.; Leite, J.P.; Gales, L.; Almeida Paz, F.A. Metal–organic frameworks: A future toolbox for biomedicine? Chem. Soc. Rev. 2020, 49, 9121–9153. [Google Scholar] [CrossRef]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 2020, 120, 8814–8933. [Google Scholar] [CrossRef]
- Feng, X.; Ding, X.; Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zou, J.; Tan, L.; Huang, Z.; Liang, P.; Meng, X. Covalent organic frameworks: From linkages to biomedical applications. Chem. Eng. J. 2022, 446, 137148. [Google Scholar] [CrossRef]
- Huang, S.; Chen, K.; Li, T.-T. Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coord. Chem. Rev. 2022, 464, 214563. [Google Scholar] [CrossRef]
- Liang, X.; Tian, Y.; Yuan, Y.; Kim, Y. Ionic Covalent Organic Frameworks for Energy Devices. Adv. Mater. 2021, 33, 2105647. [Google Scholar] [CrossRef]
- Fu, Y.; Li, Y.; Zhang, W.; Luo, C.; Jiang, L.; Ma, H. Ionic Covalent Organic Framework: What Does the Unique Ionic Site Bring to Us? Chem. Res. Chin. Univ. 2022, 38, 296–309. [Google Scholar] [CrossRef]
- Chen, Y.; Mu, T. Conversion of CO2 to value-added products mediated by ionic liquids. Green Chem. 2019, 21, 2544–2574. [Google Scholar] [CrossRef]
- Maniam, K.K.; Paul, S. Ionic Liquids and Deep Eutectic Solvents for CO2 Conversion Technologies—A Review. Materials 2021, 14, 4519. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dai, Z.; Zhang, Z.; Zeng, S.; Li, F.; Zhang, X.; Nie, Y.; Zhang, L.; Zhang, S.; Ji, X. Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating. Green Energy Environ. 2021, 6, 314–328. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S. Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. Chem. Rev. 2017, 117, 9625–9673. [Google Scholar] [CrossRef]
- Li, G.; Dong, S.; Fu, P.; Yue, Q.; Zhou, Y.; Wang, J. Synthesis of porous poly(ionic liquid)s for chemical CO2 fixation with epoxides. Green Chem. 2022, 24, 3433–3460. [Google Scholar] [CrossRef]
- Sani, R.; Dey, T.K.; Sarkar, M.; Basu, P.; Islam, S.M. A study of contemporary progress relating to COF materials for CO2 capture and fixation reactions. Mater. Adv. 2022, 3, 5575–5597. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z.; Cheng, P.; Chen, Y.; Zhang, Z. Design and application of ionic covalent organic frameworks. Coord. Chem. Rev. 2021, 438, 213873. [Google Scholar] [CrossRef]
- Ma, H.; Liu, B.; Li, B.; Zhang, L.; Li, Y.-G.; Tan, H.-Q.; Zang, H.-Y.; Zhu, G. Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. J. Am. Chem. Soc. 2016, 138, 5897–5903. [Google Scholar] [CrossRef]
- Mal, A.; Mishra, R.K.; Praveen, V.K.; Khayum, M.A.; Banerjee, R.; Ajayaghosh, A. Supramolecular Reassembly of Self-Exfoliated Ionic Covalent Organic Nanosheets for Label-Free Detection of Double-Stranded DNA. Angew. Chem. Int. Ed. 2018, 57, 8443–8447. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.; Su, Y.; Yang, Z.; Liu, J.; Hua, X.; Wei, H. A novel channel-wall engineering strategy for two-dimensional cationic covalent organic frameworks: Microwave-assisted anion exchange and enhanced carbon dioxide capture. Chin. Chem. Lett. 2020, 31, 193–196. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Shi, X.; Zhang, Z.; Yin, C.; Wang, Y. Electrosynthesis of Ionic Covalent Organic Frameworks for Charge-Selective Separation of Molecules. Small 2022, 18, 2107108. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Wei, W.; Ma, B.; Ye, W.; Wang, J.; Chen, W.; Yang, X.; Cui, S.; Wu, Z.; Soutis, C.; et al. Cationic Covalent Organic Frameworks for Fabricating an Efficient Triboelectric Nanogenerator. ACS Mater. Lett. 2020, 2, 1691–1697. [Google Scholar] [CrossRef]
- Mal, A.; Vijayakumar, S.; Mishra, R.K.; Jacob, J.; Pillai, R.S.; Dileep Kumar, B.S.; Ajayaghosh, A. Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angew. Chem. Int. Ed. 2020, 59, 8713–8719. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Guan, X.; Tang, J.; Yusran, Y.; Li, Z.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; et al. Three-Dimensional Ionic Covalent Organic Frameworks for Rapid, Reversible, and Selective Ion Exchange. J. Am. Chem. Soc. 2017, 139, 17771–17774. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.B.; Lyu, H.; Tian, J.; Wang, H.; Zhang, D.W.; Liu, Y.; Li, Z.T. A polycationic covalent organic framework: A robust adsorbent for anionic dye pollutants. Polym. Chem. 2016, 7, 3392–3397. [Google Scholar] [CrossRef]
- Wang, L.L.; Zeng, C.; Xu, H.; Yin, P.C.; Chen, D.C.; Deng, J.; Li, M.; Zheng, N.; Gu, C.; Ma, Y.G. A highly soluble, crystalline covalent organic framework compatible with device implementation. Chem. Sci. 2019, 10, 1023–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.W.; Liu, S.T.; Chen, L.; Dai, X.; Li, J.; Zhang, M.X.; Ma, F.Y.; Zhang, C.; Yang, Z.X.; Zhou, R.H.; et al. Mechanism unravelling for ultrafast and selective (TcO4-)-Tc-99 uptake by a radiation-resistant cationic covalent organic framework: A combined radiological experiment and molecular dynamics simulation study. Chem. Sci. 2019, 10, 4293–4305. [Google Scholar] [CrossRef] [Green Version]
- Das, G.; Skorjanc, T.; Sharma, S.K.; Gándara, F.; Lusi, M.; Shankar Rao, D.S.; Vimala, S.; Krishna Prasad, S.; Raya, J.; Han, D.S.; et al. Viologen-Based Conjugated Covalent Organic Networks via Zincke Reaction. J. Am. Chem. Soc. 2017, 139, 9558–9565. [Google Scholar] [CrossRef]
- Mi, Z.; Yang, P.; Wang, R.; Unruangsri, J.; Yang, W.; Wang, C.; Guo, J. Stable Radical Cation-Containing Covalent Organic Frameworks Exhibiting Remarkable Structure-Enhanced Photothermal Conversion. J. Am. Chem. Soc. 2019, 141, 14433–14442. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, G.; Cheung, O.; Jia, L.; Sun, Z.; Zhang, S. Highly Porous Metalloporphyrin Covalent Ionic Frameworks with Well-Defined Cooperative Functional Groups as Excellent Catalysts for CO2 Cycloaddition. Chem.-Eur. J. 2019, 25, 9052–9059. [Google Scholar] [CrossRef]
- Mi, Z.; Zhou, T.; Weng, W.; Unruangsri, J.; Hu, K.; Yang, W.; Wang, C.; Zhang, K.A.I.; Guo, J. Covalent Organic Frameworks Enabling Site Isolation of Viologen-Derived Electron-Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2021, 60, 9642–9649. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Wang, P.; Addicoat, M.A.; Heine, T.; Jiang, D. Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angew. Chem. Int. Ed. 2017, 56, 4982–4986. [Google Scholar] [CrossRef] [PubMed]
- Jansone-Popova, S.; Moinel, A.; Schott, J.A.; Mahurin, S.M.; Popovs, I.; Veith, G.M.; Moyer, B.A. Guanidinium-Based Ionic Covalent Organic Framework for Rapid and Selective Removal of Toxic Cr(VI) Oxoanions from Water. Environ. Sci. Technol. 2019, 53, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Xiong, F.; Jiang, L.; Jia, Q. Facile synthesis of guanidyl-based magnetic ionic covalent organic framework composites for selective enrichment of phosphopeptides. Anal. Chim. Acta 2020, 1099, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yang, H.; Whiteley, J.M.; Wan, S.; Jin, Y.; Lee, S.-H.; Zhang, W. Ionic Covalent Organic Frameworks with Spiroborate Linkage. Angew. Chem. Int. Ed. 2016, 55, 1737–1741. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, J.; Ma, D.; Li, P.; Li, S.; Li, H.; Zhou, J.; Ma, X.; Feng, X.; Wang, B. Three-Dimensional Anionic Cyclodextrin-Based Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2017, 56, 16313–16317. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Guan, Y.; Zhou, B.; Zhang, J. Theoretical Investigation of the Topology of Spiroborate-Linked Ionic Covalent Organic Frameworks (ICOFs). Chem.-Eur. J. 2019, 25, 6569–6574. [Google Scholar] [CrossRef]
- Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. A Squaraine-Linked Mesoporous Covalent Organic Framework. Angew. Chem. Int. Ed. 2013, 52, 3770–3774. [Google Scholar] [CrossRef]
- Ben, H.; Yan, G.; Liu, H.; Ling, C.; Fan, Y.; Zhang, X. Local Spatial Polarization Induced Efficient Charge Separation of Squaraine-Linked COF for Enhanced Photocatalytic Performance. Adv. Funct. Mater. 2022, 32, 2104519. [Google Scholar] [CrossRef]
- Ding, N.; Zhou, T.; Weng, W.; Lin, Z.; Liu, S.; Maitarad, P.; Wang, C.; Guo, J. Multivariate Synthetic Strategy for Improving Crystallinity of Zwitterionic Squaraine-Linked Covalent Organic Frameworks with Enhanced Photothermal Performance. Small 2022, 18, 2201275. [Google Scholar] [CrossRef]
- Mitra, S.; Kandambeth, S.; Biswal, B.P.; Khayum, M.A.; Choudhury, C.K.; Mehta, M.; Kaur, G.; Banerjee, S.; Prabhune, A.; Verma, S.; et al. Self-Exfoliated Guanidinium-Based Ionic Covalent Organic Nanosheets (iCONs). J. Am. Chem. Soc. 2016, 138, 2823–2828. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Tu, H.; Hu, C.; Liu, Y.; Dong, D.; Sun, Y.; Dai, Y.; Wang, S.; Qian, H.; Lin, Z.; et al. Cationic Covalent Organic Framework Nanosheets for Fast Li-Ion Conduction. J. Am. Chem. Soc. 2018, 140, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Da, H.-J.; Yang, C.-X.; Yan, X.-P. Cationic Covalent Organic Nanosheets for Rapid and Selective Capture of Perrhenate: An Analogue of Radioactive Pertechnetate from Aqueous Solution. Environ. Sci. Technol. 2019, 53, 5212–5220. [Google Scholar] [CrossRef]
- Da, H.-J.; Yang, C.-X.; Qian, H.-L.; Yan, X.-P. A knot-linker planarity control strategy for constructing highly crystalline cationic covalent organic frameworks: Decoding the effect of crystallinity on adsorption performance. J. Mater. Chem. A 2020, 8, 12657–12664. [Google Scholar] [CrossRef]
- Singh, H.; Devi, M.; Jena, N.; Iqbal, M.M.; Nailwal, Y.; De Sarkar, A.; Pal, S.K. Proton-Triggered Fluorescence Switching in Self-Exfoliated Ionic Covalent Organic Nanosheets for Applications in Selective Detection of Anions. ACS Appl. Mater. Interfaces 2020, 12, 13248–13255. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Jiang, H.; Wu, H.; Zhang, L.; Song, S.; Chen, Y.; Zheng, C.; Ren, Y.; Zhao, R.; Li, Y.; et al. Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angew. Chem. Int. Ed. 2021, 60, 27078–27085. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Bi, S.; Sun, Z.; Jiang, B.; Wu, D.; Chen, J.-S.; Zhang, F. Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. Angew. Chem. Int. Ed. 2021, 60, 13614–13620. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, J.; Liu, C.; Li, H.; Yang, H.; Feng, Y.; Zhang, B. Construction of Pyridine-Based Chiral Ionic Covalent Organic Frameworks as a Heterogeneous Catalyst for Promoting Asymmetric Henry Reactions. Org. Lett. 2021, 23, 1748–1752. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.W.; Mu, Z.J.; Cao, C.; Li, Z.Y.; Wang, T.X.; Li, Y.; Ding, X.S.; Han, B.H.; Feng, W. Cationic covalent organic framework based all-solid-state electrolytes. Mater. Chem. Front. 2020, 4, 1164–1173. [Google Scholar] [CrossRef]
- Ding, L.G.; Yao, B.J.; Li, F.; Shi, S.C.; Huang, N.; Yin, H.B.; Guan, Q.; Dong, Y.B. Ionic liquid-decorated COF and its covalent composite aerogel for selective CO2 adsorption and catalytic conversion. J. Mater. Chem. A 2019, 7, 4689–4698. [Google Scholar] [CrossRef]
- Yao, B.-J.; Wu, W.-X.; Ding, L.-G.; Dong, Y.-B. Sulfonic Acid and Ionic Liquid Functionalized Covalent Organic Framework for Efficient Catalysis of the Biginelli Reaction. J. Org. Chem. 2021, 86, 3024–3032. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.-G.; Yao, B.-J.; Wu, W.-X.; Yu, Z.-G.; Wang, X.-Y.; Kan, J.-L.; Dong, Y.-B. Metalloporphyrin and Ionic Liquid-Functionalized Covalent Organic Frameworks for Catalytic CO2 Cycloaddition via Visible-Light-Induced Photothermal Conversion. Inorg. Chem. 2021, 60, 12591–12601. [Google Scholar] [CrossRef] [PubMed]
- Bian, S.; Zhang, K.; Wang, Y.; Liu, Z.; Wang, G.; Jiang, X.; Pan, Y.; Xu, B.; Huang, G.; Zhang, G. Charge Separation by Imidazole and Sulfonic Acid-Functionalized Covalent Organic Frameworks for Enhanced Proton Conductivity. ACS Appl. Energy Mater. 2022, 5, 1298–1304. [Google Scholar] [CrossRef]
- Qiu, J.; Zhao, Y.; Li, Z.; Wang, H.; Shi, Y.; Wang, J. Imidazolium-Salt-Functionalized Covalent Organic Frameworks for Highly Efficient Catalysis of CO2 Conversion. ChemSusChem 2019, 12, 2421–2427. [Google Scholar]
- Zhang, Y.; Yang, D.-H.; Qiao, S.; Han, B.-H. Synergistic Catalysis of Ionic Liquid-Decorated Covalent Organic Frameworks with Polyoxometalates for CO2 Cycloaddition Reaction under Mild Conditions. Langmuir 2021, 37, 10330–10339. [Google Scholar] [CrossRef]
- Xu, X.; Xiong, R.; Zhang, Z.; Zhang, X.; Gu, C.; Xu, Z.; Qiao, S. Space-Partitioning and metal coordination in Free-Standing Covalent organic framework Nano-Films: Over 230 mWh/cm3 energy density for flexible in-Plane Micro-Supercapacitors. Chem. Eng. J. 2022, 447, 137447. [Google Scholar] [CrossRef]
- Dong, B.; Wang, L.Y.; Zhao, S.; Ge, R.L.; Song, X.D.; Wang, Y.; Gao, Y.A. Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of amines with CO2 and phenylsilane. Chem. Commun. 2016, 52, 7082–7085. [Google Scholar] [CrossRef]
- Mu, Z.-J.; Ding, X.; Chen, Z.-Y.; Han, B.-H. Zwitterionic Covalent Organic Frameworks as Catalysts for Hierarchical Reduction of CO2 with Amine and Hydrosilane. ACS Appl. Mater. Interfaces 2018, 10, 41350–41358. [Google Scholar] [CrossRef]
- Xie, Y.; Pan, T.; Lei, Q.; Chen, C.; Dong, X.; Yuan, Y.; Shen, J.; Cai, Y.; Zhou, C.; Pinnau, I.; et al. Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity. Angew. Chem. Int. Ed. 2021, 60, 22432–22440. [Google Scholar] [CrossRef]
- Du, Y.-R.; Xu, B.-H.; Xia, S.-P.; Ding, G.-R.; Zhang, S.-J. Dehydrative Formation of Isosorbide from Sorbitol over Poly(ionic liquid)–Covalent Organic Framework Hybrids. ACS Appl. Mater. Interfaces 2021, 13, 552–562. [Google Scholar] [CrossRef]
- Zuo, H.; Li, Y.; Liao, Y. Europium Ionic Liquid Grafted Covalent Organic Framework with Dual Luminescence Emissions as Sensitive and Selective Acetone Sensor. ACS Appl. Mater. Interfaces 2019, 11, 39201–39208. [Google Scholar] [CrossRef]
- Ji, S.-L.; Qian, H.-L.; Yang, C.-X.; Zhao, X.; Yan, X.-P. Cationic Surfactant-Modified Covalent Organic Frameworks for Nitrate Removal from Aqueous Solution: Synthesis by Free-Radical Polymerization. ChemPlusChem 2020, 85, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.-M.; Zhang, C.-R.; Jiang, W.; Liu, X.; Niu, C.-P.; Qi, J.-X.; Chen, X.-J.; Liang, R.-P.; Qiu, J.-D. Ionic liquid modified covalent organic frameworks for efficient detection and adsorption of ReO4−/TcO4−. J. Environ. Chem. Eng. 2022, 10, 107666. [Google Scholar] [CrossRef]
- He, X.; Yang, Y.; Wu, H.; He, G.; Xu, Z.; Kong, Y.; Cao, L.; Shi, B.; Zhang, Z.; Tongsh, C.; et al. De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport. Adv. Mater. 2020, 32, 2001284. [Google Scholar] [CrossRef]
- Wang, S.; Liang, Y.; Dai, T.; Liu, Y.; Sui, Z.; Tian, X.; Chen, Q. Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries. J. Colloid Interface Sci. 2021, 591, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Mu, Z.; Ding, X.; Han, B. Functionalized COFs with Quaternary Phosphonium Salt for Versatilely Catalyzing Chemical Transformations of CO2. Chem. Res. Chin. Univ. 2022, 38, 446–455. [Google Scholar] [CrossRef]
- Xiong, X.H.; Yu, Z.W.; Gong, L.L.; Tao, Y.; Gao, Z.; Wang, L.; Yin, W.H.; Yang, L.X.; Luo, F. Ammoniating Covalent Organic Framework (COF) for High-Performance and Selective Extraction of Toxic and Radioactive Uranium Ions. Adv. Sci. 2019, 6, 1900547. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhao, Y.; Qiu, J.; Li, Z.; Wang, H.; Wang, J. Facile Grafting of Imidazolium Salt in Covalent Organic Frameworks with Enhanced Catalytic Activity for CO2 Fixation and the Knoevenagel Reaction. ACS Sustain. Chem. Eng. 2020, 8, 18413–18419. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, Y.; Chen, S.; Zhang, W.; Zhang, Y.; Yan, T.; Yang, B.; Ma, H. Zwitterionic Covalent Organic Frameworks: Attractive Porous Host for Gas Separation and Anhydrous Proton Conduction. ACS Nano 2021, 15, 19743–19755. [Google Scholar] [CrossRef]
- Li, Y.; Cui, X.; Dong, K.; Junge, K.; Beller, M. Utilization of CO2 as a C1 Building Block for Catalytic Methylation Reactions. ACS Catal. 2017, 7, 1077–1086. [Google Scholar] [CrossRef]
- Liu, X.-F.; Li, X.-Y.; Qiao, C.; Fu, H.-C.; He, L.-N. Betaine Catalysis for Hierarchical Reduction of CO2 with Amines and Hydrosilane To Form Formamides, Aminals, and Methylamines. Angew. Chem. Int. Ed. 2017, 56, 7425–7429. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Deng, Y. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J. Chem. 2001, 25, 639–641. [Google Scholar] [CrossRef]
- Ying, T.; Tan, X.; Su, Q.; Cheng, W.; Dong, L.; Zhang, S. Polymeric ionic liquids tailored by different chain groups for the efficient conversion of CO2 into cyclic carbonates. Green Chem. 2019, 21, 2352–2361. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, J.; Yang, G.; Zhang, Z. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free Poly (ionic liquid)s. Chin. J. Chem. Eng. 2022. [Google Scholar] [CrossRef]
- Meng, X.; Ju, Z.; Zhang, S.; Liang, X.; von Solms, N.; Zhang, X.; Zhang, X. Efficient transformation of CO2 to cyclic carbonates using bifunctional protic ionic liquids under mild conditions. Green Chem. 2019, 21, 3456–3463. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zhu, Z.; Chang, T.; Fu, X.; Hao, Y.; Meng, X.; Panchal, B.; Qin, S. Hydroxylamino-Anchored Poly(Ionic Liquid)s for CO2 Fixation into Cyclic Carbonates at Mild Conditions. Adv. Sustain. Syst. 2021, 5, 2000133. [Google Scholar] [CrossRef]
- Hu, J.; Ma, J.; Liu, H.; Qian, Q.; Xie, C.; Han, B. Dual-ionic liquid system: An efficient catalyst for chemical fixation of CO2 to cyclic carbonates under mild conditions. Green Chem. 2018, 20, 2990–2994. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Yu, G.; Zeng, C.; Wang, M.; Huang, S.; Wang, L.; Zhang, J. Efficient synthesis of cyclic carbonates under atmospheric CO2 by DMAP-based ionic liquids: The difference of inert hydrogen atom and active hydrogen atom in cation. Green Chem. Eng. 2022. [Google Scholar] [CrossRef]
- Yuan, G.; Zhao, Y.; Wu, Y.; Li, R.; Chen, Y.; Xu, D.; Liu, Z. Cooperative effect from cation and anion of pyridine-containing anion-based ionic liquids for catalysing CO2 transformation at ambient conditions. Sci. China Chem. 2017, 60, 958–963. [Google Scholar] [CrossRef]
- Liu, F.; Gu, Y.; Xin, H.; Zhao, P.; Gao, J.; Liu, M. Multifunctional Phosphonium-Based Deep Eutectic Ionic Liquids: Insights into Simultaneous Activation of CO2 and Epoxide and Their Subsequent Cycloaddition. ACS Sustain. Chem. Eng. 2019, 7, 16674–16681. [Google Scholar] [CrossRef]
- Dai, Z.; Sun, Q.; Liu, X.; Bian, C.; Wu, Q.; Pan, S.; Wang, L.; Meng, X.; Deng, F.; Xiao, F.-S. Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions. J. Catal. 2016, 338, 202–209. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, G.; Zhao, Y.; Wang, H.; Li, Z.; Dai, S.; Wang, J. Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO2 by Ionic Liquids. Angew. Chem. Int. Ed. 2017, 56, 13293–13297. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Wang, J.; Zhang, S. Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem. Soc. Rev. 2016, 45, 4307–4339. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Mocci, F.; Zhang, X.; Ji, X.; Laaksonen, A. Ionic liquids for CO2 electrochemical reduction. Chin. J. Chem. Eng. 2021, 31, 75–93. [Google Scholar] [CrossRef]
- Yang, P.; Wang, X. Photocatalytic Reduction of CO2 in Ionic Liquid. In Encyclopedia of Ionic Liquids; Zhang, S., Ed.; Springer Nature Singapore: Singapore, 2022; pp. 1–9. [Google Scholar]
- Yang, Q.; Luo, M.; Liu, K.; Cao, H.; Yan, H. Covalent organic frameworks for photocatalytic applications. Appl. Catal. B Environ. 2020, 276, 119174. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhang, Z.; Ke, Q.; Zhou, B.; Cui, G.; Lu, H. Covalent Organic Frameworks with Ionic Liquid-Moieties (ILCOFs): Structures, Synthesis, and CO2 Conversion. Nanomaterials 2022, 12, 3615. https://doi.org/10.3390/nano12203615
Zhang R, Zhang Z, Ke Q, Zhou B, Cui G, Lu H. Covalent Organic Frameworks with Ionic Liquid-Moieties (ILCOFs): Structures, Synthesis, and CO2 Conversion. Nanomaterials. 2022; 12(20):3615. https://doi.org/10.3390/nano12203615
Chicago/Turabian StyleZhang, Ruina, Zekai Zhang, Quanli Ke, Bing Zhou, Guokai Cui, and Hanfeng Lu. 2022. "Covalent Organic Frameworks with Ionic Liquid-Moieties (ILCOFs): Structures, Synthesis, and CO2 Conversion" Nanomaterials 12, no. 20: 3615. https://doi.org/10.3390/nano12203615
APA StyleZhang, R., Zhang, Z., Ke, Q., Zhou, B., Cui, G., & Lu, H. (2022). Covalent Organic Frameworks with Ionic Liquid-Moieties (ILCOFs): Structures, Synthesis, and CO2 Conversion. Nanomaterials, 12(20), 3615. https://doi.org/10.3390/nano12203615