Cooling a Rotating Mirror Coupled to a Single Laguerre–Gaussian Cavity Mode Using Parametric Interactions
Abstract
:1. Introduction
2. Model and Methods
3. Results and Discussion
3.1. Effective Resonance Frequency and the Effective Damping Rate
3.2. Cooling of the Rotating Mirror with the OPA
3.2.1. From Room Temperature T = 300 K to millikelvin Temperature
3.2.2. From Temperature T = 3 K to Submillikelvin Temperatures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gavartin, E.; Verlot, P.; Kippenberg, T.J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 2012, 7, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Jin, W.-L.; Xiao, Y.-F.; Zhang, X. Measuring the Charge of a Single Dielectric Nanoparticle Using a High-Q Optical Microresonator. Phys. Rev. Appl. 2016, 6, 044021. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-F.; Li, Y.; Jing, H. Casimir switch: Steering optical transparency with vacuum forces. Sci. Rep. 2016, 6, 27102. [Google Scholar] [CrossRef]
- Huang, S.M.; Agarwal, G.S. Electromagnetically induced transparency with quantized fields in optocavity mechanics. Phys. Rev. A 2011, 83, 043826. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.M.; Agarwal, G.S. Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys. Rev. A 2011, 83, 023823. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, G.S.; Huang, S.M. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 2010, 81, 041803. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yang, X.X. Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 2005, 71, 053806. [Google Scholar] [CrossRef]
- Paspalakis, E.; Knight, P.L. Electromagnetically induced transparency and controlled group velocity in a multilevel system. Phys. Rev. A 2002, 66, 015802. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.E.; Hau, L.V. Nonlinear Optics at Low Light Levels. Phys. Rev. Lett. 1999, 82, 4611–4614. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Kuzyk, M.C.; Ren, J.; Zhang, F.; Duan, X.; Zhou, L.; Zhang, T.; Gong, Q.; Wang, H.; Gu, Y. Electromagnetically and optomechanically induced transparency and amplification in an atom-assisted cavity optomechanical system. Phys. Rev. A 2019, 100, 023820. [Google Scholar] [CrossRef]
- Yang, X.H.; Yin, Z.Y.; Xiao, M. Optomechanically induced entanglement. Phys. Rev. A 2019, 99, 013811. [Google Scholar] [CrossRef]
- Guo, Y.J.; Li, K.; Nie, W.; Li, Y. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A 2014, 90, 053841. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Nie, W.; Wu, Y.; Liao, Q.; Chen, A.; Lan, Y. Manipulating the steady-state entanglement via three-level atoms in a hybrid levitated optomechanical system. Phys. Rev. A 2020, 102, 063501. [Google Scholar] [CrossRef]
- Genes, C.; Ritsch, H.; Drewsen, M.; Dantan, A. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency. Phys. Rev. A 2011, 84, 051801. [Google Scholar] [CrossRef] [Green Version]
- Sarma, B.; Sarma, A.K. Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A 2018, 98, 013826. [Google Scholar] [CrossRef] [Green Version]
- Kani, A.; Sarma, B.; Twamley, J. Intensive Cavity-Magnomechanical Cooling of a Levitated Macromagnet. Phys. Rev. Lett. 2022, 128, 013602. [Google Scholar] [CrossRef]
- Huang, S.M.; Chen, A.X. Improving the cooling of a mechanical oscillator in a dissipative optomechanical system with an optical parametric amplifier. Phys. Rev. A 2018, 98, 063818. [Google Scholar] [CrossRef]
- Lau, H.-K.; Eisfeld, A.; Rost, J.-M. Cavity-free quantum optomechanical cooling by atom-modulated radiation. Phys. Rev. A 2018, 98, 043827. [Google Scholar] [CrossRef] [Green Version]
- Padgett, M.J. Orbital Angular Momentum, Optical Spanners, and Rotational Frequency Shift. In Laser Resonators III; SPIE: Bellingham, WA, USA, 2000; Volume 3930, pp. 130–143. [Google Scholar]
- Padgett, M.J.; Allen, L. The angular momentum of light: Optical spanners and the rotational frequency shift. Opt. Quantum Electron. 1999, 31, 1–12. [Google Scholar] [CrossRef]
- Le, D.H.; Pal, A.; Qadeer, A.; Kleinert, M.; Goel, S.; Khare, K.; Bhattacharya, M. Conservation of extremal ellipticity for coherent single mode Gaussian beams propagating in rotationally invariant media. Opt. Commun. 2022, 503, 127465. [Google Scholar] [CrossRef]
- Barnett, S.; Allen, L.; Cameron, R.; Gilson, C.R.; Padgett, M.; Speirits, F.; Yao, A.M. On the natures of the spin and orbital parts of optical angular momentum. J. Opt. 2016, 18, 064004. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of La-guerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Peng, J.-X.; Chen, Z.; Yuan, Q.-Z.; Feng, X.-L. Optomechanically induced transparency in a Laguerre-Gaussian rotational-cavity system and its application to the detection of orbital angular momentum of light fields. Phys. Rev. A 2019, 99, 043817. [Google Scholar] [CrossRef]
- Xiong, H.; Huang, Y.-M.; Wu, Y. Laguerre-Gaussian optical sum-sideband generation via orbital angular momentum exchange. Phys. Rev. A 2021, 103, 043506. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Meystre, P. Using a Laguerre-Gaussian Beam to Trap and Cool the Rotational Motion of a Mirror. Phys. Rev. Lett. 2007, 99, 153603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, M.; Giscard, P.-L.; Meystre, P. Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror. Phys. Rev. A 2008, 77, 013827. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.-J.; Zhou, S.-J.; Peng, J.-X.; Kundu, A.; Li, H.-X.; Jin, L.; Feng, X.-L. Tripartite entanglement in a Laguerre–Gaussian rotational-cavity system with an yttrium iron garnet sphere. J. Opt. Soc. Am. B 2021, 38, 285. [Google Scholar] [CrossRef]
- Volpe, G.; Petrov, D. Torque Detection using Brownian Fluctuations. Phys. Rev. Lett. 2006, 97, 210603. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.F.; Ryu, C.; Cladé, P.; Natarajan, V.; Vaziri, A.; Helmerson, K.; Phillips, W.D. Quantized Rotation of Atoms from Photons with Orbital Angular Momentum. Phys. Rev. Lett. 2006, 97, 170406. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-M.; Bai, C.-H.; Wang, D.-Y.; Wang, T.; Zheng, M.-H.; Wang, H.-F.; Zhu, A.-D.; Zhang, S. Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble. Opt. Express 2018, 26, 6143–6157. [Google Scholar] [CrossRef] [PubMed]
- DeJesus, E.X.; Kaufman, C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 1987, 35, 5288–5290. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, F.; Chen, J.; Clerk, A.A.; Girvin, S.M. Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion. Phys. Rev. Lett. 2007, 99, 093902. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Agarwal, G.S. Enhancement of cavity cooling of a micromechanical mirror using parametric interactions. Phys. Rev. A 2009, 79, 013821. [Google Scholar] [CrossRef] [Green Version]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef] [Green Version]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Phot. 2015, 7, 66–106. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Campbell, G.T.; Hage, B.; Zou, H.; Buchler, B.C.; Lam, P.K. Generation and interferometric analysis of high charge optical vortices. J. Opt. 2013, 15, 044005. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Q.; Lv, W.; Deng, L.; Huang, S.; Chen, A. Cooling a Rotating Mirror Coupled to a Single Laguerre–Gaussian Cavity Mode Using Parametric Interactions. Nanomaterials 2022, 12, 3701. https://doi.org/10.3390/nano12203701
Pan Q, Lv W, Deng L, Huang S, Chen A. Cooling a Rotating Mirror Coupled to a Single Laguerre–Gaussian Cavity Mode Using Parametric Interactions. Nanomaterials. 2022; 12(20):3701. https://doi.org/10.3390/nano12203701
Chicago/Turabian StylePan, Qiaoyun, Weiyu Lv, Li Deng, Sumei Huang, and Aixi Chen. 2022. "Cooling a Rotating Mirror Coupled to a Single Laguerre–Gaussian Cavity Mode Using Parametric Interactions" Nanomaterials 12, no. 20: 3701. https://doi.org/10.3390/nano12203701
APA StylePan, Q., Lv, W., Deng, L., Huang, S., & Chen, A. (2022). Cooling a Rotating Mirror Coupled to a Single Laguerre–Gaussian Cavity Mode Using Parametric Interactions. Nanomaterials, 12(20), 3701. https://doi.org/10.3390/nano12203701