Bimetallic MOFs-Derived Hollow Carbon Spheres Assembled by Sheets for Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MOFs and Derived Carbon Materials
2.2. Analysis and Measures
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. The Performance of the Co-pPD and CoCu-pPD
3.2. The Performance of MCNS and BMHCS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, K.; Liu, G.; Wang, Y.; Liu, J.; Li, S.; Yang, L.; Liu, S.; Wang, H.; Xie, T. Metal-organic frameworks derived novel hierarchical durian-like nickel sulfide (NiS2) as an anode material for high-performance sodium-ion batteries. Mater. Lett. 2017, 197, 180–183. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, D.; Wu, Y.; Zhao, J.; Wu, T.; Zhang, J.; Li, D.; Sun, C.; Feng, P.; Bu, X. Stable hierarchical bimetal-organic nanostructures as high performance electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2019, 58, 4227–4231. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hu, S.; Luo, X.; Li, Z.; Sun, X.; Liu, M.; Liu, F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dong, H.; Li, Y.; Liu, J. Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries. Acta Phys. Chim. Sin. 2021, 37, 2007075. [Google Scholar] [CrossRef]
- Zou, G.; Hou, H.; Ge, P.; Huang, Z.; Zhao, G.; Yin, D.; Ji, X. Metal-organic framework-derived materials for sodium energy storage. Small 2018, 14, 1702648. [Google Scholar] [CrossRef]
- Hou, H.; Qiu, X.; Wei, W.; Zhang, Y.; Ji, X. Carbon anode materials for advanced sodium-Ion batteries. Adv. Energy Mater. 2017, 7, 1602898. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Q.; Xie, Q.; Ou, H.; Lin, X.; Zeb, A.; He, L.; Wu, Y.; Ma, G. Recent progress in Co-based metal-organic framework derivatives for advanced batteries. J. Mater. Sci. Technol. 2022, 96, 262–284. [Google Scholar] [CrossRef]
- Li, A.; Xiong, P.; Zhang, Y.; Wei, S.; Chang, Z.; Xu, Y.; Be, X. 2D MOF-derived CoS1.097 nanoparticle embedded S-doped porous carbon nanosheets for high performance sodium storage. Chem. Eng. J. 2021, 405, 126638. [Google Scholar] [CrossRef]
- Moctar, I.; Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Hard carbon anode materials for sodium-ion batteries. Funct. Mater. Lett. 2018, 11, 87–109. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, R.; Yuan, Q.; Wang, F. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 2017, 167, 39–43. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Xu, H.; Yu, G.; Su, S.; Zhang, W.; Jian, C. Amino-functionalized MOF derived porous Fe3O4/N-doped C encapsulated within a graphene network by self-assembling for enhanced Li-ion storage. Sustain. Energy Fuels 2020, 4, 3519–3527. [Google Scholar] [CrossRef]
- Xu, X.; Ran, F.; Fan, Z.; Cheng, Z.; Lv, T.; Shao, L.; Xie, Z.; Liu, Y. Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption. Carbon 2020, 171, 211–220. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, Z.; Pan, Z.; Sun, J.; He, B.; Li, Q.; Zhang, T.; Zhao, J.; Tang, L.; Zhang, Z.; et al. All-metal-organic framework-derived battery materials on carbon nanotube fibers for wearable energy storage device. Adv. Sci. 2018, 5, 1801462. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, H.; Xu, J.; Zhang, Z.; Sheng, W.; Dai, S.; Xu, T.; Zhang, S.; Wang, X.; Wang, Y.; et al. Facile synthesis of MOFs derived Fe7S8/C composites for high capacity and long-life rechargeable lithium/sodium batteries. Appl. Surf. Sci. 2019, 492, 504–512. [Google Scholar] [CrossRef]
- Ge, X.; Li, Z.; Yin, L. Metal-organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 2017, 32, 117–124. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Liu, J.; Ouyang, L.; Hu, R.; Wang, H.; Yang, L.; Zhu, M. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707573. [Google Scholar] [CrossRef]
- Zhou, C.; Li, A.; Wang, D.; Pan, E.; Chen, X.; Jia, M.; Song, H. MOF-templated self-polymerization of p-phenylenediamine to a polymer with a hollow box-assembled spherical structure. Chem. Commun. 2019, 55, 4071–4074. [Google Scholar] [CrossRef]
- Nadeem, R.; Tanuj, K.; Vinamrita, S.; Ki-Hyun, K. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material. Coord. Chem. Rev. 2021, 430, 213660. [Google Scholar]
- Jiang, J.; Jiang, P.; Wang, D.; Li, Y. The synthetic strategies for single atomic site catalysts based on metal-organic frameworks. Nanoscale 2020, 12, 20580–20589. [Google Scholar] [CrossRef]
- Sara, A.; Parviz Gohari, D.; Hannes, D.; Francois-Xavier, C.; Henk, V.; Pascal, V.; Karen, L. Mixed-metal metal-organic frameworks. Chem. Soc. Rev. 2019, 48, 2535–2565. [Google Scholar]
- Chen, L.; Wang, H.; Li, C.; Xu, C. Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Wang, N.; Feng, X.; Bian, S.; Li, W.; Chen, Y. A high-efficiency oxygen evolution electrode material of a carbon material containing a NiCo bimetal. Rsc Adv. 2021, 11, 16461. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Song, H.; Chen, X.; Huo, P. Diffusion of Metal in a Confined Nanospace of Carbon Nanotubes Induced by Air Oxidation. J. Am. Chem. Soc. 2010, 132, 11402–11405. [Google Scholar] [CrossRef]
- Li, A.; Song, H.; Bian, Z.; Shi, L.; Chen, X.; Zhou, J. ZnO nanosheet/squeezebox-like porous carbon composites synthesized by in situ pyrolysis of a mixed-ligand metal–organic framework. J Mater. Chem A. 2017, 5, 5934–5942. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Zhang, L. Three-dimensional hollow porous raspberry-like hierarchical Co/Ni@carbon microspheres for magnetic solid-phase extraction of pyrethroids. Microchim. Acta 2018, 185, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Tian, J.; Wang, M.; Jin, X.; Shen, M.; Zhang, L. Metal-organic framework derived carbon supported Cu-In nanoparticles for highly selective CO2 electroreduction to CO. Catal. Sci. Technol. 2021, 11, 6096–6102. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Y.; Li, C.; Zhao, Q.; Li, X. Synthesis of bimetallic MOFs MIL-100(Fe-Mn) as an efficient catalyst for selective catalytic reduction of NOx with NH3. Catal. Lett. 2016, 146, 1956–1964. [Google Scholar] [CrossRef]
- Qiu, S.; Xiao, L.; Sushko, M.; Han, K.; Shao, Y.; Yan, M.; Liang, X.; Mai, L.; Feng, J.; Cao, Y.; et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, D.; Li, A.; Pan, E.; Liu, H.; Chen, X.; Song, H. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem. Eng. J. 2020, 380, 122457. [Google Scholar] [CrossRef]
- Fu, L.; Tang, K.; Song, K.; Aken, P.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384–1389. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, J.; Song, H. Tailoring highly N-doped carbon materials from hexamine-based MOFs: Superior performance and new Insight into the roles of N configurations in Na-ion storage. Small 2018, 14, e1703548. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, A.; Cao, B.; Chen, X.; Jia, M.; Song, H. The non-ignorable impact of surface oxygen groups on the electrochemical performance of N/O dual-doped carbon anodes for sodium ion batteries. J. Electrochem. Soc. 2018, 165, A1447–A1454. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, G.; Wang, Y.; Han, X.; Huang, Y.; Liu, P. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 29, 56–65. [Google Scholar] [CrossRef]
- Liu, W.; Ning, L.; Li, S.; Liu, W.; Zhang, Q.; Shao, J.; Tian, J. N-rich MOFs derived N-doped carbon nanotubes encapsulating cobalt nanoparticles as efficient and magnetic recoverable catalysts for nitro aromatics reduction. J. Alloys Compd. 2021, 862, 158333. [Google Scholar] [CrossRef]
- Zou, G.; Jia, X.; Huang, Z.; Li, S.; Liao, H.; Hou, H.; Huang, L.; Ji, X. Cube-shaped porous carbon derived from MOF-5 as advanced material for sodium-ion batteries. Electrochim. Acta 2016, 196, 413–421. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, X.; Zhao, Y.; Carné-Sánchez, A.; Malgras, V.; Kim, J.; Kim, J.; Wang, S.; Liu, J.; Jiang, J.; et al. Hollow carbon nanobubbles: Monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 2017, 8, 3538–3546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, G.; Hou, H.; Cao, X.; Ge, P.; Zhao, G.; Yin, D.; Ji, X. 3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. J. Mater. Chem. A 2017, 5, 23550–23558. [Google Scholar] [CrossRef]
- Kaneti, Y.; Zhang, J.; He, Y.; Wang, Z.; Tanaka, S.; Hossain, M.; Pan, Z.; Xiang, B.; Yang, Q.; Yamauchi, Y. Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 15356–15366. [Google Scholar] [CrossRef]
- Chen, M.; Hou, S.; Liu, M.; Guo, Y.; Liu, T.; Li, J.; Fu, W.; Wang, L.; Zhao, L. MOF derived ZnFe2O4 nanoparticles scattered in hollow octahedra carbon skeleton for advanced lithium-ion batteries. Appl. Surf. Sci. 2021, 541, 148475. [Google Scholar]
- Sun, W.; Chen, S.; Wang, Y. A metal-organic-framework approach to engineer hollow bimetal oxide microspheres towards enhanced electrochemical performances of lithium storage. J. Mater. Chem. A 2019, 48, 2019–2027. [Google Scholar] [CrossRef]
- Hou, L.; Jiang, X.; Jiang, Y.; Jiao, T.; Cui, R.; Deng, S.; Gao, J.; Guo, Y.; Gao, F. Facile preparation of porous rod-like CuxCo3−xO4/C composites via bimetal-organic framework derivation as superior anodes for lithium-ion batteries. ACS Omega 2019, 4, 7565–7573. [Google Scholar] [CrossRef] [Green Version]
- Wahid, M.; Puthusseri, D.; Gawil, Y.; Sharma, N.; Ogale, S. Hard carbons for sodium-ion battery anodes: Synthetic strategies, material properties, and storage mechanisms. ChemSusChem 2018, 11, 506–526. [Google Scholar] [CrossRef]
- He, H.; Sun, D.; Tang, Y.; Wang, H.; Shao, M. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233–251. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, D.; Yang, H.; Li, A.; Song, H.; Chen, X.; Xing, G.; Yang, H.; Liu, H. N, O co-doped urchin-like carbon microspheres as high-performance anode materials for lithium ion batteries. Solid State Ion. 2021, 361, 115562. [Google Scholar] [CrossRef]
- Wang, G.; Shao, M.; Ding, H.; Qi, Y.; Lian, J.; Li, S.; Qiu, J.; Li, H. Multiple active sites of carbon for high-rate surface-capacitive sodium-ion storage. Angew. Chem. Int. Edit. 2019, 58, 13584–13589. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, L.; Li, O.; Choi, S.; Saeed, G.; Kim, K. FeF3·0.33H2O@carbon nanosheets with honeycomb architectures for high-capacity lithium-ion cathode storage by enhanced pseudocapacitance. J. Mater. Chem. A 2021, 9, 16370–16383. [Google Scholar] [CrossRef]
- Liang, H.; Hu, Z.; Zhao, Z.; Chen, D.; Zhang, H.; Wan, H.; Wang, X.; Li, Q.; Guo, X.; Li, H. Dendrite-structured FeF2 consisting of closely linked nanoparticles as cathode for high-performance lithium-ion capacitors. J. Energy Chem. 2021, 55, 517–523. [Google Scholar] [CrossRef]
MOFs-Derived Carbon Materials | Cycle Performance | Rate Performance | Batteries |
---|---|---|---|
Hollow carbon spheres (this work) | 306 mA h g−1 at 1 A g−1 after 300 cycles | 260 mA h g−1 at 5 A g−1 | SIBs |
Cube-shaped porous carbon [35] | 240 mA h g−1 at 0.1 A g−1 after 100 cycles | 100 mA h g−1 at 3.2 A g−1 | SIBs |
Hollow carbon nanobubbles [36] | 100 mA h g−1 at 10 A g−1 after 1000 cycles | 100 mA h g−1 at 3.2 A g−1 | SIBs |
Hollow carbon nanobubbles [30] | 236 mA h g−1 at 0.1 A g−1 after 100 cycles | 142 mA h g−1 at 5 A g−1 | SIBs |
3D hollow porous carbon microspheres [37] | 313 mA h g−1 at 0.1 A g−1 after 100 cycles | 112.5 mA h g−1 at 5 A g−1 | SIBs |
Ni-doped Co/CoO/NC hybrid [38] | 218 mA h g−1 at 0.05 A g−1 after 100 cycles | 110 mA h g−1 at 5 A g−1 | SIBs |
ZnFe2O4@C nanocomposites [39] | 1780 mA h g−1 at 1 A g−1 after 400 cycles | 918 mA h g−1 at 3 A g−1 | LIBs |
Hollow Fe–Mn–O/C razmak microspheres [40] | 1294 mA h g−1 at 0.1 A g−1 after 200 cycles | 521 mA h g−1 at 1 A g−1 | LIBs |
Carbon-coated Cu-Co razmak bimetal oxide composite material [41] | 900 mA h g−1 at 0.1 A g−1 after 100 cycles | 507 mA h g−1 at 1 A g−1 | LIBs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Li, A.; Zhou, C.; Liu, X.; Chen, X.; Liu, H.; Liu, T.; Song, H. Bimetallic MOFs-Derived Hollow Carbon Spheres Assembled by Sheets for Sodium-Ion Batteries. Nanomaterials 2022, 12, 3926. https://doi.org/10.3390/nano12213926
Yang H, Li A, Zhou C, Liu X, Chen X, Liu H, Liu T, Song H. Bimetallic MOFs-Derived Hollow Carbon Spheres Assembled by Sheets for Sodium-Ion Batteries. Nanomaterials. 2022; 12(21):3926. https://doi.org/10.3390/nano12213926
Chicago/Turabian StyleYang, Hui, Ang Li, Chunli Zhou, Xuewei Liu, Xiaohong Chen, Haiyan Liu, Tao Liu, and Huaihe Song. 2022. "Bimetallic MOFs-Derived Hollow Carbon Spheres Assembled by Sheets for Sodium-Ion Batteries" Nanomaterials 12, no. 21: 3926. https://doi.org/10.3390/nano12213926
APA StyleYang, H., Li, A., Zhou, C., Liu, X., Chen, X., Liu, H., Liu, T., & Song, H. (2022). Bimetallic MOFs-Derived Hollow Carbon Spheres Assembled by Sheets for Sodium-Ion Batteries. Nanomaterials, 12(21), 3926. https://doi.org/10.3390/nano12213926