Preparation, Application and Enhancement Dyeing Properties of ZnO Nanoparticles in Silk Fabrics Dyed with Natural Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Methods
2.2. Colorant Extraction
2.2.1. Hematoxylin
2.2.2. Tea Polyphenols
2.3. Preparation
2.4. Mordanting and Dyeing
2.5. Color Measurements
2.6. Determination of Dye Exhaustion
2.7. Fastness Properties
3. Results
3.1. Structure and Morphology
3.2. X-ray Diffraction (XRD) and FTIR Analysis for the ZnO Nanoparticles
3.3. Color Strength of Dyed Fabric with Hematoxylin and Tea Polyphenols
3.4. Dye Exhaustion
3.5. Fastness Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rashidi, L.; Khosravi-Darani, K. The Applications of Nanotechnology in Food Industry. Crit. Rev. Food Sci. Nutr. 2011, 51, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Yu, J.; Jiang, S.; Chen, Y. Biomass carbon materials with porous array structures derived from soybean dregs for effective electromagnetic wave absorption. Diam. Relat. Mater. 2022, 126, 109054. [Google Scholar] [CrossRef]
- Mahmoud, W.M.M.; Rastogi, T.; Kummerer, K. Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water. Curr. Opin. Green Sustain. Chem. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; He, S.; Du, H.; Liu, K.; Zhang, C.; Jiang, S. Facile Electrodeposition of NiCo2O4 Nanosheets on Porous Carbonized Wood for Wood-Derived Asymmetric Supercapacitors. Polymers 2022, 14, 2521. [Google Scholar] [CrossRef] [PubMed]
- Khezri, K.; Saeedi, M.; Dizaj, S.M. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed. Pharmacother. 2018, 106, 1499–1505. [Google Scholar] [CrossRef]
- Du, J.J.; Zhang, Y.Y.; Guo, R.L.; Meng, F.X.; Gao, Y.C.; Ma, C.; Zhang, H.Z. Harmful effect of nanoparticles on the functions of freshwater ecosystems: Insight into nano ZnO-polluted stream. Chemosphere 2019, 214, 830–838. [Google Scholar] [CrossRef]
- Prasad, A.R.; Williams, L.; Garvasis, J.; Shamsheera, K.O.; Basheer, M.S.; Kuruvilla, M.; Joseph, A. Applications of phytogenic ZnO nanoparticles: A review on recent advancements. J. Mol. Liq. 2021, 331, 115805. [Google Scholar] [CrossRef]
- Kangralkar, M.V.; Manjanna, J.; Momin, N.; Rane, K.S.; Nayaka, G.P.; Kangralkar, V.A. Photocatalytic degradation of hexavalent chromium and different staining dyes by ZnO in aqueous medium under UV light. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100508. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, L.; Lu, L.; Gan, L.; Pan, M. Adsorption-photocatalytic properties of cellulose nanocrystal supported ZnO nanocomposites. J. For. Eng. 2020, 5, 29–35. [Google Scholar]
- Jin, S.E.; Jin, H.E. Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics 2019, 11, 575. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.X.; Yu, H.Y.; Li, H.J.; Qian, D.J. Interfacial self-assembly of nanoZnO@multiporphyrin array hybrids as binary light-sensitizers for photocurrent generation and photocatalytic degradation of organic pollutants. Appl. Surf. Sci. 2020, 521, 146465. [Google Scholar] [CrossRef]
- Pascariu, P.; Homocianu, M. ZnO-based ceramic nanofibers: Preparation, properties and applications. Ceram. Int. 2019, 45, 11158–11173. [Google Scholar] [CrossRef]
- Beura, R.; Pachaiappan, R.; Paramasivam, T. Photocatalytic degradation studies of organic dyes over novel Ag-loaded ZnO-graphene hybrid nanocomposites. J. Phys. Chem. Solids 2021, 148, 109689. [Google Scholar] [CrossRef]
- Mohammed, R.; Ali, M.; Gomaa, E.; Mohsen, M. Green ZnO nanorod material for dye degradation and detoxification of pharmaceutical wastes in water. J. Environ. Chem. Eng. 2020, 8, 104295. [Google Scholar] [CrossRef]
- Zandi, S.; Kameli, P.; Salamati, H.; Ahmadvand, H.; Hakimi, M. Microstructure and optical properties of ZnO nanoparticles prepared by a simple method. Phys. B 2011, 406, 3215–3218. [Google Scholar] [CrossRef]
- Jian, S.J.; Ma, X.F.; Wang, Q.M.; Wu, J.L.; Wang, Y.F.; Jiang, S.H.; Xu, W.H.; Yang, W.S. Hierarchical porous Co3O4 nanocages with elaborate microstructures derived from ZIF-67 toward lithium storage. Vacuum 2021, 184, 109879. [Google Scholar] [CrossRef]
- Filip, A.; Musat, V.; Tigau, N.; Polosan, S.; Pimentel, A.; Ferreira, S.; Gomes, D.; Calmeiro, T.; Martins, R.; Fortunato, E. ZnO nanostructures grown on ITO coated glass substrate by hybrid microwave-assisted hydrothermal method. Optik 2020, 208, 164372. [Google Scholar] [CrossRef]
- Zheng, J.J.; Hanshe, M.; Sun, Z.X.; Chen, Y.M.; Jiang, S.H.; Zhang, Y.X.; Cao, Y.X.; Li, X.P.; Shiju, E. From waste to wealth: Crumb rubber@carbon nanotube/Fe3O4 composites towards highly effective electromagnetic microwave absorption with wide bandwidth. Diam. Relat. Mater. 2022, 126, 109089. [Google Scholar] [CrossRef]
- Abdullah, K.A.; Awad, S.; Zaraket, J.; Salame, C. Synthesis of ZnO Nanopowders by Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature. Energy Procedia 2017, 119, 565–570. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, S.; Zeng, G.; Zhou, W. Microstructure and electrochemical performances of TiO2-coated Mg-Zr co-doped NCM as cathode materials for lithium-ion batteries with high power and long circular life. New J. Chem. 2021, 45, 19446–19455. [Google Scholar]
- Li, Y.; Tong, S.; Li, R.; Dai, L.; Si, C. Preparation and properties of Fe/lignin nanoparticle composite paper. J. For. Eng. 2021, 6, 123–129. [Google Scholar]
- Adam, R.E.; Pozina, G.; Willander, M.; Nur, O. Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photonics Nanostruct. 2018, 32, 11–18. [Google Scholar] [CrossRef]
- Xia, H.; An, J.; Zhang, W.; Ge, C.; Zuo, S. Effect of the metal-support interaction on catalytic oxidation performances of HMF on Ag nanoparticles. J. For. Eng. 2020, 5, 88–93. [Google Scholar]
- Chen, X.; Wei, M.; Jiang, S.; Förster, S. Two growth mechanisms of thiol-capped gold nanoparticles controlled by ligand chemistry. Langmuir 2019, 35, 12130–12138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Z.; Fang, Y.; Jiang, S.; Wang, M.; Zhang, G. MnO2 mediated sequential oxidation/olefination of alkyl-substituted heteroarenes with alcohols. Tetrahedron 2020, 76, 130968. [Google Scholar] [CrossRef]
- Win, T.T.; Maung, Y.M.; Soe, K.K.K. Characterization of Nano-sized ZnO Electrodes with Curcumin-derived Natural Dye Extract for DSSC Application. Am. J. Mater. Sci. Technol. 2012, 1, 28–33. [Google Scholar] [CrossRef]
- Cunha, D.M.; Ito, N.M.; Xavier, A.M.; Arantes, J.T.; Souza, F.L. Zinc oxide flower-like synthesized under hydrothermal conditions. Thin Solid Films 2013, 537, 97–101. [Google Scholar] [CrossRef]
- Shubha, P.; Gowda, M.L.; Namratha, K.; Shyamsunder, S.; Manjunatha, H.B.; Byrappa, K. Ex-situ fabrication of ZnO nanoparticles coated silk fiber for surgical applications. Mater. Chem. Phys. 2019, 231, 21. [Google Scholar] [CrossRef]
- Du, H.J.; Cheng, J.; Wang, M.H.; Tian, M.C.; Yang, X.M.; Wang, Q. Red dye extracted sappan wood waste derived activated carbons characterization and dye adsorption properties. Diam. Relat. Mater. 2022, 102, 107646. [Google Scholar] [CrossRef]
- Zhang, G.; Liang, Q.; Yang, W.; Jiang, S.; Wang, Z.; Zhang, C.; Zhang, G. One Pot Synthesis of 1, 2-Disubstituted Ethanones by Base-Mediated Reductive Homocoupling of Aldehydes. Adv. Synth. Catal. 2020, 364, 2951–2956. [Google Scholar] [CrossRef]
- Zhou, Q.; Rather, L.J.; Ali, A.; Wang, W.C.; Zhang, Y.Y.; Haque, Q.M.R.; Li, Q. Environmental friendly bioactive finishing of wool textiles using the tannin-rich extracts of Chinese tallow (Sapium sebiferum L.) waste/fallen leaves. Dye. Pigment. 2020, 176, 108230. [Google Scholar] [CrossRef]
- Phan, K.; Raes, K.; Van Speybroeck, V.; Roosen, M.; De Clerck, K.; De Meester, S. Non-food applications of natural dyes extracted from agro-food residues: A critical review. J. Clean. Prod. 2021, 301, 126920. [Google Scholar] [CrossRef]
- Gong, K.; Pan, Y.; Rather, L.J.; Wang, W.C.; Zhou, Q.; Zhang, T.H.; Li, Q. Natural pigment during flora leaf senescence and its application in dyeing and UV protection finish of silk and wool—A case study of Cinnamomum Camphora. Dye. Pigment. 2019, 166, 114–121. [Google Scholar] [CrossRef]
- Du, H.J.; Wang, Q.; Tian, M.C.; Yang, X.M. Simple crystallization approach for enhancing function of plant-based madder dye and performance of dyed fabric. Heliyon 2019, 5, e02232. [Google Scholar] [CrossRef]
- Rehman, A.; Ahmad, A.; Hameed, A.; Kiran, S.; Farooq, T. Green dyeing of modified cotton fabric with Acalypha wilkesiana leave extracts. Sustain. Chem. Pharm. 2021, 21, 100432. [Google Scholar] [CrossRef]
- Phan, K.; Van Den Broeck, E.; Van Speybroeck, V.; De Clerck, K.; Raes, K.; De Meester, S. The potential of anthocyanins from blueberries as a natural dye for cotton: A combined experimental and theoretical study. Dye. Pigment. 2020, 176, 108180. [Google Scholar] [CrossRef]
- Patel, B.; Kanade, P. Iron-tannin complex effect on coloration and functional properties of silk fabric. Sustain. Chem. Pharm. 2021, 22, 100490. [Google Scholar] [CrossRef]
- Shahidul, I.; Mohammad, F. Natural Colorants in the Presence of Anchors So-Called Mordants as Promising Coloring and Antimicrobial Agents for Textile Materials. ACS Sustain. Chem. Eng. 2015, 3, 2361–2375. [Google Scholar] [CrossRef]
- Avazpour, S.; Karimi, L.; Zohoori, S. Simultaneous coloration and functional finishing of cotton fabric using Ag/ZnO nanocomposite. Color. Technol. 2017, 133, 423–430. [Google Scholar] [CrossRef]
- Eskani, I.N.; Haerudin, A.; Setiawan, J.; Lestari, D.W.; Isnaini; Astuti, W. Modification of cotton fabric by ZnO nanoparticles for producing an antibacterial natural dyed batik. IOP Conf. Ser. Earth Environ. Sci. 2020, 462, 012031. [Google Scholar] [CrossRef]
- Mohamed, M.; Sedky, A.; Kassem, M.A. Gradual growth of ZnO nanoparticles from globules-like to nanorods-like shapes: Effect of annealing temperature. Optik 2022, 265, 169559. [Google Scholar] [CrossRef]
- Alshraiedeh, N.H.; Ammar, O.F.; Masadeh, M.M.; Alzoubi, K.H.; Al-Fandi, M.G.; Oweis, R.J.; Alsharedeh, R.H.; Alabedr, R.A.; Hayajneh, R.H. Comparative Study of Antibacterial Activity of Different ZnO Nanoparticles, Nanoflowers, and Nanoflakes. Curr. Nanosci. 2022, 18, 758–765. [Google Scholar] [CrossRef]
Sample | Temperature/℃ | Reaction Time/h | Material Ratios (Zn2+:OH−/(mol/mol)) |
---|---|---|---|
#1 | 100 | 6 | 2:1 |
#2 | 100 | 6 | 1:1 |
#3 | 100 | 6 | 1:2 |
#4 | 100 | 6 | 1:4 |
#5 | 130 | 6 | 2:1 |
#6 | 130 | 6 | 1:1 |
#7 | 130 | 6 | 1:2 |
#8 | 130 | 6 | 1:4 |
#9 | 100 | 12 | 2:1 |
#10 | 100 | 12 | 1:1 |
#11 | 100 | 12 | 1:2 |
#12 | 100 | 12 | 1:4 |
#13 | 130 | 12 | 2:1 |
#14 | 130 | 12 | 1:1 |
#15 | 130 | 12 | 1:2 |
#16 | 130 | 12 | 1:4 |
Substrate | Mordant | Light Fastness | Wash Fastness (Color Change) |
---|---|---|---|
Silk | - | 1 | 1–2 |
ZnO | 1–2 | 1 | |
#1 | 1–2 | 1–2 | |
#2 | 1–2 | 1–2 | |
#3 | 1–2 | 1–2 | |
#4 | 1–2 | 1–2 | |
#5 | 1–2 | 1–2 | |
#6 | 1–2 | 1–2 | |
#7 | 1–2 | 1–2 | |
#8 | 1–2 | 1 | |
#9 | 1–2 | 2 | |
#10 | 1–2 | 1–2 | |
#11 | 1–2 | 1 | |
#12 | 1–2 | 1–2 | |
#13 | 1–2 | 1–2 | |
#14 | 1–2 | 1–2 | |
#15 | 1–2 | 1 | |
#16 | 1–2 | 1 |
Substrate | Mordant | Light Fastness | Wash Fastness (Color Change) |
---|---|---|---|
Silk | - | 2–3 | 3–4 |
ZnO | 2–3 | 3 | |
#1 | 3 | 4–5 | |
#2 | 3 | 4–5 | |
#3 | 3 | 4 | |
#4 | 3 | 3 | |
#5 | 3 | 3–4 | |
#6 | 3 | 3–4 | |
#7 | 3 | 3–4 | |
#8 | 3 | 3–4 | |
#9 | 3 | 3 | |
#10 | 3 | 4–5 | |
#11 | 3 | 3–4 | |
#12 | 3 | 4–5 | |
#13 | 3 | 4 | |
#14 | 3 | 4 | |
#15 | 3 | 3–4 | |
#16 | 3 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Yue, M.; Huang, X.; Duan, G.; Yang, Z.; Huang, W.; Shen, W.; Yin, X. Preparation, Application and Enhancement Dyeing Properties of ZnO Nanoparticles in Silk Fabrics Dyed with Natural Dyes. Nanomaterials 2022, 12, 3953. https://doi.org/10.3390/nano12223953
Du H, Yue M, Huang X, Duan G, Yang Z, Huang W, Shen W, Yin X. Preparation, Application and Enhancement Dyeing Properties of ZnO Nanoparticles in Silk Fabrics Dyed with Natural Dyes. Nanomaterials. 2022; 12(22):3953. https://doi.org/10.3390/nano12223953
Chicago/Turabian StyleDu, Haijuan, Mengyuan Yue, Xin Huang, Gaigai Duan, Zhihui Yang, Weihan Huang, Wenjie Shen, and Xiangfeng Yin. 2022. "Preparation, Application and Enhancement Dyeing Properties of ZnO Nanoparticles in Silk Fabrics Dyed with Natural Dyes" Nanomaterials 12, no. 22: 3953. https://doi.org/10.3390/nano12223953
APA StyleDu, H., Yue, M., Huang, X., Duan, G., Yang, Z., Huang, W., Shen, W., & Yin, X. (2022). Preparation, Application and Enhancement Dyeing Properties of ZnO Nanoparticles in Silk Fabrics Dyed with Natural Dyes. Nanomaterials, 12(22), 3953. https://doi.org/10.3390/nano12223953