Design and Manufacturing of Antibacterial Electrospun Polysulfone Membranes Functionalized by Ag Nanocoating via Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrospinning of PSU Scaffolds and DOE Factorial Design Approach
2.2. Mechanical Tests
2.3. Sputter-Deposition of Ag Nanocoatings
2.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)
2.5. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.6. X-ray Diffraction (XRD)
2.7. Contact Angle Measurements (WCA)
2.8. Antibacterial Tests
2.9. Statistical Analysis of Antibacterial Tests
3. Results
3.1. Electrospinning, Mechanical Characterization, and DOE Results
− 1.463 FR(mL) × d(cm) + 1.913 Vi(kV) × d(cm)
3.2. Characterization of the Samples before and after the Ag Nanocoating Process
3.3. Contact Angle Measurements
3.4. Antibacterial Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xinzhen, F.; Yahia, L.; Sacher, E. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology 2021, 10, 137. [Google Scholar]
- Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653. [Google Scholar] [CrossRef]
- Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nanotoday 2015, 10, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Chaloupka, K.; Yogeshkumar, M.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010, 28, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Makvandi, P.; Wang, C.Y.; Zare, E.N.; Borzacchiello, A.; Niu, L.N.; Tay, F.R. Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 2020, 30, 1910021. [Google Scholar] [CrossRef]
- Ditaranto, N.; Basoli, F.; Trombetta, M.; Cioffi, N.; Rainer, A. Electrospun nanomaterials implementing antibacterial inorganic nanophases. Appl. Sci. 2018, 8, 1643. [Google Scholar] [CrossRef] [Green Version]
- Ferrone, E.; Araneo, R.; Notargiacomo, A.; Pea, M.; Rinaldi, A. ZnO nanostructures and electrospun ZnO–polymeric hybrid nanomaterials in biomedical, health, and sustainability applications. Nanomaterials 2019, 9, 1449. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun nanofibers: New concepts, materials, and applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef]
- Imani, S.M.; Ladouceur, L.; Marshall, T.; Maclachlan, R.; Soleymani, L.; Didar, T.F. Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano 2020, 14, 1234112369. [Google Scholar] [CrossRef]
- Rai, P.K.; Usmani, Z.; Thakur, V.K.; Gupta, V.K.; Mishra, Y.K. Tackling COVID-19 pandemic through nanocoatings: Confront and exactitude. Curr. Res. Green Sustain. Chem. 2020, 3, 100011. [Google Scholar] [CrossRef]
- López-Martín, R.; Rodrigo, I.; Ballesta, C.; Arias, A.; Mas, A.; Burgos, B.S.; Normile, P.S.; De Toro, J.A.; Binns, C. Effectiveness of Silver Nanoparticles Deposited in Facemask Material for Neutralising Viruses. Nanomaterials 2022, 12, 2662. [Google Scholar] [CrossRef] [PubMed]
- Xiu, Z.-M.; Zhang, Q.-B.; Puppala, H.L.; Colvin, V.L.; Alvarez, P.J.J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nanoletters 2012, 12, 4271–4275. [Google Scholar] [CrossRef]
- Phong, A.T.; Hocking, D.M.; O’Connor, A.J. In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications. Mater. Sci. Eng. 2015, C47, 63–69. [Google Scholar]
- Sumitha, M.S.; Shalumon, K.T.; Sreeja, V.N.; Jayakumar, R.; Nair, S.V.; Menon, D. Biocompatible and antibacterial nanofibrous poly (ε-caprolactone)-nanosilver composite scaffolds for tissue engineering applications. J. Macromol. Sci. Part A 2012, 49, 131–138. [Google Scholar] [CrossRef]
- Pazos-Ortiz, E.; Roque-Ruiz, J.H.; Hinojos-Márquez, E.A.; López-Esparza, J.; Donohue-Cornejo, A.; Cuevas-González, J.C.; Espinosa-Cristóbal, L.F.; Reyes-López, S.Y. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J. Nanomater. 2017, 2017, 4752314. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.; Soumya, K.R.; Mathew, J.; Radhakrishnan, E.K. Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Appl. Biochem. Biotechnol. 2015, 176, 2213–2224. [Google Scholar] [CrossRef]
- Valerini, D.; Tammaro, L.; Vitali, R.; Guillot, G.; Rinaldi, A. Sputter-deposited Ag nanoparticles on electrospun PCL scaffolds: Morphology, wettability and antibacterial activity. Coatings 2021, 11, 345. [Google Scholar] [CrossRef]
- Wang, N.; Wang, T.; Hu, Y. Tailoring membrane surface properties and ultrafiltration performances via the self-assembly of polyethylene glycol-block-polysulfone-block-polyethylene glycol block copolymer upon thermal and solvent annealing. ACS Appl. Mater. Interfaces 2017, 9, 31018–31030. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, S.; Luan, J.; Mu, Y.; Du, Y.; Wang, G. Fabrication of ultrafiltration membranes with enhanced antifouling capability and stable mechanical properties via the strategies of blending and crosslinking. J. Membr. Sci. 2017, 539, 116–127. [Google Scholar] [CrossRef]
- Zhu, M.; Li, D.; Sun, X.; Gao, C. Antifouling polysulfone membranes with an amphiphilic triblock additive. Mater. Chem. Phys. 2022, 285, 126108. [Google Scholar] [CrossRef]
- Wu, X.; Fang, F.; Zhang, B.; Wu, J.J.; Zhang, K. Biogenic silver nanoparticles-modified forward osmosis membranes with mitigated internal concentration polarization and enhanced antibacterial properties. Npj Clean. Water 2022, 5, 1–9. [Google Scholar]
- Prihandana, G.S.; Sriani, T.; Muthi’Ah, A.D.; Musa, S.N.; Jamaludin, M.F.; Mahardika, M. Antibacterial Activity of Silver Nanoflake (SNF)-Blended Polysulfone Ultrafiltration Membrane. Polymers 2022, 14, 3600. [Google Scholar] [CrossRef] [PubMed]
- Prihandana, G.S.; Sriani, T.; Muthi’Ah, A.D.; Machmudah, A.; Mahardika, M.; Miki, N. Study Effect of nAg Particle Size on the Properties and Antibacterial Characteristics of Polysulfone Membranes. Nanomaterials 2022, 12, 388. [Google Scholar] [CrossRef] [PubMed]
- Deniz, F.; Nazır, H.; Keskin, N.O.S. Synergistic Antibacterial and Anticorrosive Effect of Polysulfone Nanofibers Embedded with Biogenic Silver Nanoparticles for Microbiologically Influenced Corrosion of Nickel. ChemistrySelect 2022, 7, e202104607. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, S.; Meng, L.; Chen, G.; Luo, X.; Huang, M. Comparison of novel functionalized nanofiber forward osmosis membranes for application in antibacterial activity and TRGs rejection. J. Hazard. Mater. 2020, 392, 122250. [Google Scholar] [CrossRef]
- Seyedmahmoud, R.; Rainer, A.; Mozetic, P.; Giannitelli, S.M.; Trombetta, M.; Traversa, E.; Licoccia, S.; Rinaldi, A. A primer of statistical methods for correlating parameters and properties of electrospun poly (l-lactide) scaffolds for tissue engineering—PART 1: Design of experiments. J. Biomed. Mater. Res. Part A 2015, 103, 91–102. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 162–165. [Google Scholar]
- Valerini, D.; Tammaro, L.; Vigliotta, G.; Picariello, E.; Banfi, F.; Cavaliere, E.; Ciambriello, L.; Gavioli, L. Ag functionalization of Al-doped ZnO nanostructured coatings on PLA substrate for antibacterial applications. Coatings 2020, 10, 1238. [Google Scholar] [CrossRef]
- Amruta, L.S.; Sharma, S.J.; Ramchandra, B. Pode Synthesis of silver nanoparticles: A safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res 2010, 2, 478–483. [Google Scholar]
- Szewczyk, P.K.; Ura, D.P.; Metwally, S.; Knapczyk-Korczak, J.; Gajek, M.; Marzec, M.M.; Bernasik, A.; Stachewicz, U. Roughness and fiber fraction dominated wetting of electrospun fiber-based porous meshes. Polymers 2019, 11, 34. [Google Scholar] [CrossRef]
Parameter | Label | Unit | Low Level (−1) | High Level (+1) | |
---|---|---|---|---|---|
X1 | Flow Rate | FR | mL/h | 1 | 2 |
X2 | Voltage at Injector | Vi | kV | 5 | 10 |
X3 | Working Distance | d | cm | 16 | 18 |
Parameter | Unit | Label | |
---|---|---|---|
Y1 | Ultimate Tensile Strength | MPa | UTS |
Y2 | Young modulus | MPa | E |
Standard Order | Sample ID | Xs | Ys | |||
---|---|---|---|---|---|---|
FR (mL/h) | Vi (kV) | D (cm) | Y1: UTS (MPa) | Y2: E (MPa) | ||
1 | DOE1 | 1 | 5 | 16 | 4.5 | 291 |
2 | DOE2 | 1 | 10 | 16 | 2.5 | 82 |
3 | DOE3 | 2 | 5 | 16 | 18.5 | 805 |
4 | DOE4 | 2 | 10 | 16 | 8.3 | 309 |
5 | DOE5 | 1 | 5 | 18 | 3.0 | 157 |
6 | DOE6 | 1 | 10 | 18 | 9.5 | 529 |
7 | DOE7 | 2 | 5 | 18 | 12.0 | 459 |
8 | DOE8 | 2 | 10 | 18 | 8.6 | 411 |
Best Models for PSU | R-sq | R-sq (adj) | R-sq (pred) |
---|---|---|---|
Y1: UTS (MPa) | 99.78% | 99.24% | 96.54% |
Y2: Young Modulus (MPa) | 99.22% | 97.26% | 87.47% |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 5 | 194.976 | 38.9952 | 184.59 | 0.005 | |
Linear | 2 | 107.652 | 53.8262 | 254.80 | 0.004 | |
FR (mL) | 1 | 97.301 | 97.3012 | 460.60 | 0.002 | |
Vi (kV) | 1 | 10.351 | 10.3513 | 49.00 | 0.020 | |
2-Way interactions | 3 | 87.324 | 29.1079 | 137.79 | 0.007 | |
FR (mL) * Vi (kV) | 1 | 40.951 | 40.9513 | 193.85 | 0.005 | |
FR (mmL) * d (cm) | 1 | 17.111 | 17.1113 | 81.00 | 0.012 | |
Vi (kV) * d (cm) | 1 | 29.261 | 29.2613 | 138.51 | 0.007 | |
Error | 2 | 0.423 | 0.2113 | |||
Total | 7 | 195.399 |
Bacterial Population (CFU/mL) | |||
---|---|---|---|
Treatment | 1 h | 2 h | 3 h |
Control (E. coli) | (8.9 ± 1.5) × 105 | (7.5 ± 0.9) × 105 | (7.3 ± 1.6) × 106 |
DOE3 | (3.5 ± 0.2) × 105 | (1.8 ± 0.9) × 106 | (6.6 ± 1.0) × 106 |
DOE3-Ag | (1.5 ± 0.5) × 105 | (4.2 ± 1.0) × 105 | (4.2 ± 0.5) × 105 |
DOE7 | (1.3 ± 0.1) × 106 | (2.4 ± 0.1) × 106 | (1.7 ± 0.3) × 107 |
DOE7-Ag | (2.1 ± 0.5) × 105 | (2.9 ± 0.8) × 105 | (3.5 ± 0.5) × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiaschini, N.; Giuliani, C.; Vitali, R.; Tammaro, L.; Valerini, D.; Rinaldi, A. Design and Manufacturing of Antibacterial Electrospun Polysulfone Membranes Functionalized by Ag Nanocoating via Magnetron Sputtering. Nanomaterials 2022, 12, 3962. https://doi.org/10.3390/nano12223962
Fiaschini N, Giuliani C, Vitali R, Tammaro L, Valerini D, Rinaldi A. Design and Manufacturing of Antibacterial Electrospun Polysulfone Membranes Functionalized by Ag Nanocoating via Magnetron Sputtering. Nanomaterials. 2022; 12(22):3962. https://doi.org/10.3390/nano12223962
Chicago/Turabian StyleFiaschini, Noemi, Chiara Giuliani, Roberta Vitali, Loredana Tammaro, Daniele Valerini, and Antonio Rinaldi. 2022. "Design and Manufacturing of Antibacterial Electrospun Polysulfone Membranes Functionalized by Ag Nanocoating via Magnetron Sputtering" Nanomaterials 12, no. 22: 3962. https://doi.org/10.3390/nano12223962
APA StyleFiaschini, N., Giuliani, C., Vitali, R., Tammaro, L., Valerini, D., & Rinaldi, A. (2022). Design and Manufacturing of Antibacterial Electrospun Polysulfone Membranes Functionalized by Ag Nanocoating via Magnetron Sputtering. Nanomaterials, 12(22), 3962. https://doi.org/10.3390/nano12223962