Nanoflower-like P-doped Nickel Oxide as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of P-NiO
2.3. Preparation of Various CEs
2.4. Preparation of Photoanode and Fabrication of the DSSC
2.5. Characterization of the CEs and the DSSCs
3. Results and Discussion
3.1. X-ray Diffraction Patterns, Energy Dispersive Analysis of X-ray, and X-ray Photoelectron Spectra
3.2. Field Scanning Electron Micrographs of the Films
3.3. Photovoltaic Performance of the DSSCs
3.4. Cyclic Voltammetry of the CEs
3.5. Tafel Polarization Plots of the CEs
3.6. Electrochemical Impendence Spectroscopy of the CEs
3.7. Incident Photon-to-Current Conversion Efficiency (IPCE) Spectra of the DSSCs
3.8. Photovoltaic Performance of the DSSCs at Dim Lights
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, Z.; Chen, J.; Hu, Y.; Wu, W.; Hua, J.; Tian, H. Efficient sinter-free nanostructure Pt counter electrode for dye-sensitized solar cells. J. Mater. Chem. C 2014, 2, 8497–8500. [Google Scholar] [CrossRef]
- Yang, W.; Ma, X.; Xu, X.; Li, Y.; Raj, S.I.; Ning, G.; Wang, A.; Chen, S. Sulfur-doped porous carbon as metal-free counter electrode for high-efficiency dye-sensitized solar cells. J. Power Sources 2015, 282, 228–234. [Google Scholar] [CrossRef]
- Sugathan, V.; John, E.; Sudhakar, K. Recent improvements in dye sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2015, 52, 54–64. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Chiang, Y.-J.; Yu, H.-F.; Hsiao, L.-Y.; Yeh, C.-L.; Chang, L.-Y.; Ho, K.-C.; Yeh, M.-H. Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows. Nano Energy 2021, 90, 106575. [Google Scholar] [CrossRef]
- O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 11 November 2022).
- Thomas, S.; Deepak, T.; Anjusree, G.; Arun, T.; Nair, S.V.; Nair, A.S. A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 4474–4490. [Google Scholar] [CrossRef]
- Gong, F.; Xu, X.; Li, Z.; Zhou, G.; Wang, Z.-S. NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Chem. Commun. 2013, 49, 1437–1439. [Google Scholar] [CrossRef]
- Yeh, M.H.; Sun, C.-L.; Su, J.-S.; Lin, L.-Y.; Lee, C.-P.; Chen, C.-Y.; Wu, C.-G.; Vittal, R.; Ho, K.-C. A low-cost counter electrode of ITO glass coated with a graphene/Nafion® composite film for use in dye-sensitized solar cells. Carbon 2012, 50, 4192–4202. [Google Scholar] [CrossRef]
- Yeh, M.H.; Lin, L.Y.; Huang, T.Y.; Chuang, H.M.; Chu, C.W.; Ho, K.C. Study on Oxidation State Dependent Electrocatalytic Ability for I−/I3−Redox Reaction of Reduced Graphene Oxides. Electroanalysis 2014, 26, 147–155. [Google Scholar] [CrossRef]
- Lin, K.-Y.; Cai, M.-Q.; Wu, Y.-T.; Yeh, M.-H.; Jiang, J.-C. Boron and nitrogen co doped multilayer graphene as a counter electrode: A combined theoretical and experimental study on dye-sensitized solar cells under ambient light conditions. J. Phys. Chem. C 2021, 125, 24894–24901. [Google Scholar] [CrossRef]
- Yeh, M.H.; Lin, L.Y.; Sun, C.L.; Leu, Y.A.; Tsai, J.T.; Yeh, C.Y.; Vittal, R.; Ho, K.C. Multiwalled carbon nanotube@reduced graphene oxide nanoribbon as the counter electrode for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 16626–16634. [Google Scholar] [CrossRef]
- Yeh, M.-H.; Leu, Y.-A.; Chiang, W.-H.; Li, Y.-S.; Chen, G.-L.; Li, T.-J.; Chang, L.-Y.; Lin, L.-Y.; Lin, J.-J.; Ho, K.-C. Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction. J. Power Sources 2018, 375, 29–36. [Google Scholar] [CrossRef]
- Yeh, M.H.; Lee, C.-P.; Lin, L.-Y.; Nien, P.-C.; Chen, P.-Y.; Vittal, R.; Ho, K.-C. A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells. Electrochim. Acta 2011, 56, 6157–6164. [Google Scholar] [CrossRef]
- Yeh, M.H.; Lin, L.Y.; Lee, C.P.; Wei, H.Y.; Chen, C.-Y.; Wu, C.G.; Vittal, R.; Ho, K.C. A composite catalytic film of PEDOT:PSS/TiN–NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell. J. Mater. Chem. 2011, 21, 19021–19029. [Google Scholar] [CrossRef]
- Peng, J.D.; Wu, Y.T.; Yeh, M.H.; Kuo, F.Y.; Vittal, R.; Ho, K.C. Transparent cobalt selenide/graphene counter electrode for efficient dye-sensitized solar cells with Co(2+)/(3+)-based redox couple. ACS Appl. Mater. Interfaces 2020, 12, 44597–44607. [Google Scholar] [CrossRef]
- Kuo, F.Y.; Lin, F.S.; Yeh, M.H.; Fan, M.S.; Hsiao, L.Y.; Lin, J.J.; Jeng, R.J.; Ho, K.C. Synthesis of surfactant-free and morphology-controllable vanadium diselenide for efficient counter electrodes in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2019, 11, 25090–25099. [Google Scholar] [CrossRef]
- Jian, S.-L.; Huang, Y.-J.; Yeh, M.-H.; Ho, K.-C. A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells. J. Mater. Chem. A 2018, 6, 5107–5118. [Google Scholar] [CrossRef]
- Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Meng, Q. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 2011, 4, 2630–2637. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Y.; Lin, X.; Yu, N.; Wang, L.; Wang, L.; Hagfeldt, A.; Ma, T. Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 2011, 13, 19298–19301. [Google Scholar] [CrossRef]
- Chen, L.; Dai, H.; Zhou, Y.; Hu, Y.; Yu, T.; Liu, J.; Zou, Z. Porous, single crystalline titanium nitride nanoplates grown on carbon fibers: Excellent counter electrodes for low-cost, high performance, fiber-shaped dye-sensitized solar cells. Chem. Commun. 2014, 50, 14321–14324. [Google Scholar] [CrossRef]
- Soo Kang, J.; Park, M.-A.; Kim, J.-Y.; Ha Park, S.; Young Chung, D.; Yu, S.-H.; Kim, J.; Park, J.; Choi, J.-W.; Jae Lee, K. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye-and quantum dot-sensitized solar cells. Sci. Rep. 2015, 5, 10450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.-T.; Chang, H.-Y.; Li, Y.-Y.; Huang, Y.-J.; Tsai, Y.-L.; Vittal, R.; Sheng, Y.-J.; Ho, K.-C. Electrocatalytic zinc composites as the efficient counter electrodes of dye-sensitized solar cells: Study on the electrochemical performances and density functional theory calculations. ACS Appl. Mater. Interfaces 2015, 7, 28254–28263. [Google Scholar] [CrossRef] [PubMed]
- Paranthaman, V.; Pandian, M.S.; Alagarsamy, P.; nay Ming, H.; Perumalsamy, R. Influence of zirconium dioxide and titanium dioxide binders on the photovoltaic performance of dye sensitized solar cell tungsten carbide nanorods based counter electrode. Electrochim. Acta 2016, 211, 375–384. [Google Scholar] [CrossRef]
- Dou, Y.; Li, G.; Song, J.; Gao, X. Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Bai, J.; Wang, Y.; Wang, A.; Lin, X.; Wang, L.; Shen, Y.; Wang, Z.; Hagfeldt, A.; Ma, T. High-performance phosphide/carbon counter electrode for both iodide and organic redox couples in dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 11121–11127. [Google Scholar] [CrossRef]
- Duan, Y.; Tang, Q.; He, B.; Zhao, Z.; Zhu, L.; Yu, L. Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes. J. Power Sources 2015, 284, 349–354. [Google Scholar] [CrossRef]
- Duan, Y.; Tang, Q.; Liu, J.; He, B.; Yu, L. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Angew. Chem. Int. Ed. 2014, 53, 14569–14574. [Google Scholar] [CrossRef]
- Salimi, A.; Sharifi, E.; Noorbakhsh, A.; Soltanian, S. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity. Biosens. Bioelectron. 2007, 22, 3146–3153. [Google Scholar] [CrossRef]
- Guai, G.H.; Leiw, M.Y.; Ng, C.M.; Li, C.M. Sulfur-doped nickel oxide thin film as an alternative to Pt for dye-sensitized solar cell counter electrodes. Adv. Energy Mater. 2012, 2, 334–338. [Google Scholar] [CrossRef]
- Nakaoka, K.; Ueyama, J.; Ogura, K. Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films. J. Electroanal. Chem. 2004, 571, 93–99. [Google Scholar] [CrossRef]
- Wang, Z.; Li, P.; Chen, Y.; He, J.; Liu, J.; Zhang, W.; Li, Y. Phosphorus-doped reduced graphene oxide as an electrocatalyst counter electrode in dye-sensitized solar cells. J. Power Sources 2014, 263, 246–251. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Z.; Meng, X.; Lu, B.; Cui, D.; Qiu, J. Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction. Nanoscale 2016, 8, 17458–17464. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Ouyang, Y.; Chen, Y.; Zheng, L.; Wu, C.; Wang, X. P-doped ternary transition metal oxide as electrode material of asymmetric supercapacitor. J. Energy Storage 2020, 28, 101248. [Google Scholar] [CrossRef]
- Dai, W.; Bai, X.; Zhu, Y.-A.; Zhang, Y.; Lu, T.; Pan, Y.; Wang, J. Surface reconstruction induced in situ phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 6432–6441. [Google Scholar] [CrossRef]
- Peck, M.A.; Langell, M.A. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 2012, 24, 4483–4490. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Kuang, S.; Liu, S.; Zhuo, S. The production of cobalt sulfide/graphene composite for use as a low-cost counter-electrode material in dye-sensitized solar cells. J. Power Sources 2014, 269, 473–478. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Wu, H.B.; Hoster, H.E.; Chan-Park, M.B.; Lou, X.W. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 2012, 5, 9453–9456. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, M.; Gao, P. Preparation and electrochemical properties of multiwalled carbon nanotubes–nickel oxide porous composite for supercapacitors. Mater. Res. Bull. 2007, 42, 1740–1747. [Google Scholar] [CrossRef]
- Wang, H.; Sun, K.; Tao, F.; Stacchiola, D.J.; Hu, Y.H. 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew. Chem. Int. Ed. 2013, 52, 9210–9214. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Pan, X.; Liu, W.; Zhang, B.; Chen, H.; Fang, X.; Yao, J.; Dai, S. FeSe2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells. Chem. Commun. 2014, 50, 2618–2620. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, D.; Hou, Y.; Yang, S.; Yang, X.H.; Zhong, J.H.; Liu, J.; Wang, H.F.; Hu, P.; Zhao, H.J.; et al. Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells. Sci. Rep. 2013, 3, 1836. [Google Scholar] [CrossRef] [PubMed]
CEs | η (%) | Voc (V) | Jsc (mA cm−2) | FF |
---|---|---|---|---|
P-NiO-1 | 7.95 ± 0.02 | 0.77 ± 0.01 | 15.83 ± 0.04 | 0.65 ± 0.00 |
P-NiO-0.75 | 8.10 ± 0.03 | 0.77 ± 0.01 | 15.90 ± 0.01 | 0.66 ± 0.00 |
P-NiO-0.5 | 9.05 ± 0.04 | 0.79 ± 0.00 | 16.96 ± 0.01 | 0.68 ± 0.00 |
P-NiO-0.25 | 8.67 ± 0.08 | 0.79 ± 0.01 | 16.73 ± 0.04 | 0.65 ± 0.01 |
P-NiO-0.1 | 8.54 ± 0.03 | 0.79 ± 0.03 | 16.50 ± 0.07 | 0.66 ± 0.00 |
CEs | η (%) | Voc (V) | Jsc (mA cm−2) | FF |
---|---|---|---|---|
P-NiO-0.5 | 9.05 ± 0.04 | 0.79 ± 0.00 | 16.96 ± 0.01 | 0.68 ± 0.00 |
NiO | 0.19 ± 0.00 | 0.76 ± 0.08 | 4.24 ± 0.04 | 0.06 ± 0.00 |
Pt | 8.51 ± 0.00 | 0.79 ± 0.02 | 16.17 ± 0.03 | 0.67 ± 0.00 |
CEs | Jpc (mA cm−2) | ΔEp (V) | J0 (mA cm−2) | Rct-Tafel (Ω cm2) | Rs (Ω cm2) | Rct-EIS (Ω cm2) | Jsc-IPCE (mA cm−2) |
---|---|---|---|---|---|---|---|
P-NiO-0.5 | 1.20 | 0.38 | 3.37 | 3.81 | 23.54 | 3.87 | 13.84 |
NiO | N/A | N/A | 4.27 × 10−3 | 3011 | 30.36 | 3258 | 3.33 |
Pt | 0.91 | 0.47 | 2.71 | 4.74 | 19.71 | 4.51 | 13.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-L.; Huang, Y.-J.; Yeh, M.-H.; Fan, M.-S.; Lin, C.-T.; Chang, C.-C.; Ramamurthy, V.; Ho, K.-C. Nanoflower-like P-doped Nickel Oxide as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells. Nanomaterials 2022, 12, 4036. https://doi.org/10.3390/nano12224036
Chen Y-L, Huang Y-J, Yeh M-H, Fan M-S, Lin C-T, Chang C-C, Ramamurthy V, Ho K-C. Nanoflower-like P-doped Nickel Oxide as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells. Nanomaterials. 2022; 12(22):4036. https://doi.org/10.3390/nano12224036
Chicago/Turabian StyleChen, Yi-Lin, Yi-June Huang, Min-Hsin Yeh, Miao-Syuan Fan, Cheng-Tai Lin, Ching-Cheng Chang, Vittal Ramamurthy, and Kuo-Chuan Ho. 2022. "Nanoflower-like P-doped Nickel Oxide as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells" Nanomaterials 12, no. 22: 4036. https://doi.org/10.3390/nano12224036
APA StyleChen, Y. -L., Huang, Y. -J., Yeh, M. -H., Fan, M. -S., Lin, C. -T., Chang, C. -C., Ramamurthy, V., & Ho, K. -C. (2022). Nanoflower-like P-doped Nickel Oxide as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells. Nanomaterials, 12(22), 4036. https://doi.org/10.3390/nano12224036