CoSn3 Intermetallic Nanoparticles for Electronic Packaging
Abstract
:1. Introduction
2. Materials and Methods
3. Result and Discussion
3.1. Reductive Reaction
3.2. Growth
3.3. Application of CoSn3 Nanoparticles in Electronic Packaging
4. Conclusions
- (1)
- CoSn3 nanoparticles are successfully prepared via a sodium borohydride reduction method. The precursors used for the preparation of CoSn3 nanoparticles are CoCl2 and SnCl2, and the reducing agent is NaBH4. The reduction products are heated in a tube furnace at 350 °C for 10 min (N2 + H2) to obtain CoSn3 nanoparticles with a size of about 150 nm;
- (2)
- CoSn3 nanoparticles undergo a step reaction in the process of synthesis, as follows: Co3Sn2 -CoSn-CoSn2-CoSn3; AND CoSn3 nanoparticles undergo degradation by heat in the order of CoSn3-CoSn2-CoSn-Co3Sn2, precipitating Sn;
- (3)
- During the growth of CoSn3 nanoparticles by heat, the larger the particle diameter, the faster the growth. In the early stage of nanoparticles growth, the merging of particles of a similar size is the main phenomenon, and the phenomenon of “orientation unification” is found. At the later stage of particle growth, the phenomenon of “orientation adhesion” is found, as the larger particles engulf the smaller ones.
Author Contributions
Funding
Conflicts of Interest
References
- Belaid, K.A.; Belahrach, H.; Ayad, H. Genetic Algorithms and Particle Swarm Optimization Mechanisms for Through-Silicon Via (TSV) Noise Coupling. Appl. Comput. Intell. Soft Comput. 2021, 2021, 8830395. [Google Scholar] [CrossRef]
- Lin, P.; Xie, X.; Wang, Y.; Lian, B.; Zhang, G. A multi-step etch method for fabricating slightly tapered through-silicon vias based on modified Bosch process. Microsyst. Technol. 2018, 25, 2693–2698. [Google Scholar] [CrossRef]
- Serafy, C.; Bing, S.; Srivastava, A. A geometric approach to chip-scale TSV shield placement for the reduction of TSV coupling in 3D-ICs. Integr. VLSI J. 2014, 47, 307–317. [Google Scholar] [CrossRef]
- Vianne, B.; Richard, M.I.; Escoubas, S.; Labat, S.; Schülli, T.; Chahine, G.; Fiori, V.; Thomas, O. Through-silicon via-induced strain distribution in silicon interposer. Appl. Phys. Lett. 2015, 106, 841–846. [Google Scholar] [CrossRef]
- Luo, J.; Sun, Y.; Wang, B.; Jin, Z.; Yang, S.; Wang, Y.; Ding, G. Elastic and elastic-plastic analysis of multilayer thin films filled with heterogeneous materials. AIP Adv. 2018, 8, 115134. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.L.; Gourlay, M.C. Nucleation, grain orientations, and microstructure of Sn-3Ag-0.5Cu soldered on cobalt substrates. J. Alloy. Compd. 2017, 706, 596–608. [Google Scholar] [CrossRef]
- Ma, Z.L.; Belyakov, S.A.; Sweatman, K.; Nishimura, T.; Gourlay, C.M. Harnessing heterogeneous nucleation to control tin orientations in electronic interconnections. Nat. Commun. 2017, 8, 1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, C.; Du, N.; Zhang, H.; Yu, J.; Wu, P.; Xiao, C.; Yang, D. Assembling CoSn3 nanoparticles on multiwalled carbon nanotubes with enhanced lithium storage properties. Nanoscale 2011, 3, 1798–1801. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, R.; Nwokeke, U.; Rodriguez, I.; Tirado, J.L. Electrochemical Reaction of Lithium with Nanocrystalline CoSn3. Electrochem. Solid-State Lett. 2008, 11, A209. [Google Scholar] [CrossRef]
- Lehman, L.P.; Xing, Y.; Bieler, T.R.; Cotts, E.J. Cyclic twin nucleation in tin-based solder alloys. Acta Mater. 2010, 58, e1–e10. [Google Scholar] [CrossRef]
- Qiao, Y.; Ma, H.; Zhao, N. Diffusion anisotropy induced uneven regional growth of Cu6Sn5 IMC in Cu/SAC305/Cu micro solder joints under temperature gradient. J. Alloy. Compd. 2021, 886, 161221. [Google Scholar] [CrossRef]
- Zhong, Y.; An, R.; Ma, H.; Wang, C. Low-Temperature-Solderable Intermetallic Nanoparticles for 3D Printable Flexible Electronics. Acta Mater. 2018, 162, 163–175. [Google Scholar] [CrossRef]
- Ma, Z.L.; Xian, J.W.; Belyakov, S.A.; Gourlay, C.M. Nucleation and twinning in tin droplet solidification on single crystal intermetallic compounds. Acta Mater. 2018, 150, 281–294. [Google Scholar] [CrossRef]
- Wakai, F.; Yoshida, M.; Shinoda, Y.; Akatsu, T. Coarsening and grain growth in sintering of two particles of different sizes. Acta Mater. 2005, 53, 1361–1371. [Google Scholar] [CrossRef]
- Bars, I. Frenkel’s theory of sintering. Physics 1996, 55, 2373–2381. [Google Scholar]
Sodium Borohydride | NaBH4 | AR | Aladdin® |
---|---|---|---|
Cobalt chloride | CoCl2 | AR | Aladdin® |
Stannous chloride | SnCl2·2H2O | AR | Aladdin® |
Triethylene glycol | C6H14O4 | AR | Aladdin® |
Polyethylene glycol | HO(CH2CH2O)nH | AR | Aladdin® |
Ethylene glycol | (CH2OH)2 | AR | Aladdin® |
Polyvinylpyrrolidone | (C6H9NO)n | AR | Aladdin® |
Anhydrous ethanol | C2H6O | AR | Aladdin® |
Dimethyldiallylammonium chloride | C8H16NCl | AR | Aladdin® |
OM338PT SAC305 | Sn-3.0Ag-0.5Cu | ∽90% | ALPHA® |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lv, Z.; Zhang, L.; Duan, F.; Zhang, W.; Chen, H. CoSn3 Intermetallic Nanoparticles for Electronic Packaging. Nanomaterials 2022, 12, 4083. https://doi.org/10.3390/nano12224083
Wang J, Lv Z, Zhang L, Duan F, Zhang W, Chen H. CoSn3 Intermetallic Nanoparticles for Electronic Packaging. Nanomaterials. 2022; 12(22):4083. https://doi.org/10.3390/nano12224083
Chicago/Turabian StyleWang, Jintao, Ziwen Lv, Luobin Zhang, Fangcheng Duan, Weiwei Zhang, and Hongtao Chen. 2022. "CoSn3 Intermetallic Nanoparticles for Electronic Packaging" Nanomaterials 12, no. 22: 4083. https://doi.org/10.3390/nano12224083
APA StyleWang, J., Lv, Z., Zhang, L., Duan, F., Zhang, W., & Chen, H. (2022). CoSn3 Intermetallic Nanoparticles for Electronic Packaging. Nanomaterials, 12(22), 4083. https://doi.org/10.3390/nano12224083