Phase and Structural Thermal Evolution of Bi–Si–O Catalysts Obtained via Laser Ablation
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Materials
2.2. Characterization of Materials
2.3. Photocatalytic Tests of Materials
3. Results and Discussion
3.1. Phase Evolution during Annealing of Laser-Prepared BSO-Based Nanomaterials
3.1.1. Samples of the BSO group
Samples BSO and BSO_2
Samples BSO_3 and BSO_4
Samples BSO_5, BSO_6, BSO_7 and BSO_8
3.1.2. Samples of the BSO_hν Group
3.1.3. Comparison with Other Works
3.1.4. Conclusions to Section 3.1
- Nanomaterials based on the pure bismuth metasilicate phase can be obtained through quite a simple synthetic approach.
- Nanomaterials based on mixtures of bismuth silicates can also be prepared by combining laser ablation and post-annealing at different temperatures, if necessary. Such mixed nanomaterials can exhibit properties comparable or superior to those based on pure metasilicate. Therefore, various nanocomposites obtained in this work are also of potential interest.
- At lower annealing temperatures (up to 500 °C) phase evolution of materials is governed very much by their initial state. That is, the products of annealing for non-irradiated and laser-irradiated samples BSO and BSO_hν differed significantly.
- The preparation technique described in this work, i.e., laser ablation in liquid (LAL) phase, is attractive for several reasons. It is not complex and can be combined with further annealing post-treatment, uses simple and inexpensive precursors, and is environmentally friendly. At the same time, it allows for a wide range of nanomaterials based on different bismuth silicates and their mixtures and, hence, with different properties.
3.2. Thermal Structure Evolution in Laser-Prepared Bismuth-Silicate-Based Nanomaterials
3.2.1. Samples of the BSO Group
3.2.2. Samples of the BSO_hν Group
3.2.3. Discussion to Section 3.2
3.2.4. Conclusions to Section 3.2
3.3. Photocatalytic Activity of the Laser-Prepared Bismuth-Silicate-Based Nanomaterials
3.3.1. Photocatalytic Decomposition of Phenol
3.3.2. Photocatalytic Decomposition of Rd B
3.3.3. Discussion and Conclusions to Section 3.3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmoud, H.R.; Saif, M.; Fouad, R. Novel multi-functional Pr3+:Bi12SiO20 luminescent nano-sensor for latent human prints, iron ions in drinking water and anticounterfeiting application. J. Alloys Compd. 2019, 805, 887–895. [Google Scholar] [CrossRef]
- Ke, Y.; Huang, W.; Thatikonda, K.S.; Chen, R.; Yao, C.; Qin, N.; Bao, D. Highly frequency-, temperature-, and bias-stable dielectric properties of 500 °C processed Bi2SiO5 thin films with low dielectric loss. Curr. Appl. Phys. 2020, 20, 751–754. [Google Scholar] [CrossRef]
- Sakamoto, K.; Hagiwara, M.; Taniguchi, H.; Fujihara, S. Fabrication of bismuth silicate Bi2SiO5 ceramics as a potential high-temperature dielectric material. J. Mater. Sci. 2021, 56, 8415–8426. [Google Scholar] [CrossRef]
- Back, M.; Casagrande, E.; Brondin, C.A.; Ambrosi, E.; Cristofori, D.; Ueda, J.; Tanabe, S.; Trave, E.; Riello, P. Lanthanide-doped Bi2SiO5@SiO2 core-shell upconverting nanoparticles for stable ratiometric optical thermometry. ACS Appl. Nano Mater. 2020, 3, 2594–2604. [Google Scholar] [CrossRef]
- Back, M.; Casagrande, E.; Trave, E.; Cristofori, D.; Ambrosi, E.; Dallo, F.; Roman, M.; Ueda, J.; Xu, J.; Tanabe, S.; et al. Confined-melting-assisted synthesis of bismuth silicate glass-ceramic nanoparticles: Formation and optical thermometry investigation. ACS Appl. Mater. Interfaces 2020, 12, 55195–55204. [Google Scholar] [CrossRef]
- Akhmedzhanov, F.R.; Mirzaev, S.Z.; Saidvaliev, U.A. Parameters of elastic anisotropy in bismuth silicate crystals. Ferroelectrics 2020, 556, 23–28. [Google Scholar] [CrossRef]
- Batool, S.S.; Imran, Z.; Rasool, K.; Ambreen, J.; Hassan, S.; Arif, S.; Ahmad, M.; Rafiq, M.A. Study of electric conduction mechanisms in bismuth silicate nanofibers. Sci. Rep. 2020, 10, 2775. [Google Scholar] [CrossRef]
- Qin, X.; Huang, Y.; Shen, Y.; Zhao, M.; Gao, X. Porous 3D flower-like bismuth silicate@nitrogen-doped graphene nanomaterial as high-efficient catalyst for fuel cell cathode. Ceram. Int. 2019, 45, 24515–24527. [Google Scholar] [CrossRef]
- Rafailov, P.M.; Marinova, V.; Todorov, R.; Boyadjiev, S. An optical excitation study of pure and Ru-doped Bi12SiO20 crystals with graphene coating. J. Phys. Conf. Ser. 2021, 1762, 012024. [Google Scholar] [CrossRef]
- Dadenkov, I.G.; Tolstik, A.L.; Miksyuk, Y.I.; Saechnikov, K.A. Photoinduced absorption and pulsed recording of dynamic holograms in bismuth silicate crystals. Opt. Spectrosc. 2020, 128, 1401–1406. [Google Scholar] [CrossRef]
- Bautista-Ruiz, J.; Chaparro, A.; Bautista, W. Characterization of bismuth-silicate soles. J. Phys. Conf. Ser. 2019, 1386, 012020. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Zhao, A.; Li, X.; Tang, J.; Zhang, F.; Jia, G.; Zhang, C. Synthesis, structure, and color-tunable luminescence properties of lanthanide activator ions doped bismuth silicate as single-phase white light emitting phosphors. J. Alloys Compd. 2020, 816, 152546. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G.; Lu, Y.; Zhang, F.; Jia, G.; Zhang, C. Novel bismuth silicate based upconversion phosphors: Facile synthesis, structure, luminescence properties, and applications. J. Lumin. 2019, 216, 116718. [Google Scholar] [CrossRef]
- Zaitsev, A.V.; Kirichenko, E.A.; Kaminsky, O.I.; Makarevich, K.S. Investigation into the efficiency of photocatalytic oxidation of aqueous solutions of organic toxins in a unit with an automatically cleaning bismuth-silicate photocatalyst. J. Water Process. Eng. 2020, 37, 101468. [Google Scholar] [CrossRef]
- Batool, S.S.; Hassan, S.; Imran, Z.; Rasool, K.; Ahmad, M.; Rafiq, M.A. Comparison of different phases of bismuth silicate nanofibers for photodegradation of organic dyes. Int. J. Environ. Sci. Technol. 2016, 13, 1497–1504. [Google Scholar] [CrossRef]
- Yiting, F.; Shiji, F.; Renying, S.; Ishii, M. Study on phase diagram of Bi203-SiO2 system for Bridgman growth of Bi4Si3012 single crystal. Prog. Cryst Growth Charact. 2000, 40, 183–188. [Google Scholar] [CrossRef]
- Mahmoud, H.R. Bismuth silicate (Bi4Si3O12 and Bi2SiO5) prepared by ultrasonic-assisted hydrothermal method as novel catalysts for biodiesel production via oleic acid esterification with methanol. Fuel 2019, 256, 115979. [Google Scholar] [CrossRef]
- Chen, C.C.; Yang, C.T.; Chung, W.H.; Chang, J.L.; Lin, W.Y. Synthesis and characterization of Bi4Si3O12, Bi2SiO5, and Bi12SiO20 by controlled hydrothermal method and their photocatalytic activity. J. Taiwan Inst. Chem. Eng. 2017, 78, 157–167. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, X.; Li, M.; Hei, X.P.; Liu, C.; Zhang, X. Studying the preparation of pure Bi12SiO20 by Pechini method with high photocatalytic performance. J. Sol-Gel Sci. Technol. 2021, 97, 311–319. [Google Scholar] [CrossRef]
- Shabalina, A.V.; Fakhrutdinova, E.D.; Golubovskaya, A.G.; Kuzmin, S.M.; Koscheev, S.V.; Kulinich, S.A.; Svetlichnyi, V.A.; Vodyankina, O.V. Laser-assisted preparation of highly-efficient photocatalytic nanomaterial based on bismuth silicate. Appl. Surf. Sci. 2022, 575, 151722. [Google Scholar] [CrossRef]
- Shabalina, A.V.; Izaak, T.I.; Kharlamova, T.S.; Martynova, D.O.; Lapin, I.N.; Svetlichnyi, V.A. Ag/SiOx nanocomposite powders synthesized from colloids obtained by pulsed laser ablation. Colloids Surf. A 2018, 553, 80–88. [Google Scholar] [CrossRef]
- Souri, D.; Tahan, Z.E. A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 2015, 119, 273–279. [Google Scholar] [CrossRef]
- Levin, E.M.; Roth, R.S. Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on the polymorphism of Bi2O3. J. Res. Natl. Bur. Stand. A Phys. Chem. 1964, 68A, 197–206. [Google Scholar] [CrossRef]
- Guo, H. Crystallization Kinetics of Bi2O3-SiO2 Binary System. In Advances in Glass Science and Technology; Sglavo, V.M., Ed.; IntechOpen: London, UK, 2018; pp. 61–76. [Google Scholar] [CrossRef]
- Taniguchi, H.; Tatewaki, S.; Yasui, S.; Fujii, Y.; Yamaura, J.; Terasaki, I. Structural variations and dielectric properties of (Bi1−xLax)2SiO5 (0 ≤ x ≤ 0.1): Polycrystallines synthesized by crystallization of Bi-Si-O and Bi-La-Si-O glasses. Phys. Rev. Mater. 2018, 2, 045603. [Google Scholar] [CrossRef]
- Dimitriev, Y.; Krupchanska, M.; Ivanova, Y.; Staneva, A. Sol-gel synthesis of materials in the system Bi2O3-SiO2. J. Univ. Chem. Technol. Metall. 2010, 45, 39–42. [Google Scholar]
- Karthik, K.; Devi, K.R.S.; Pinheiro, D.; Sugunan, S. Photocatalytic activity of bismuth silicate heterostructures synthesized via surfactant mediated sol-gel method. Mater. Sci. Semicond. Proc. 2019, 102, 104589. [Google Scholar] [CrossRef]
- Chai, B.; Yan, J.; Fan, G.; Song, G.; Wang, C. In-situ construction of Bi2SiO5/BiOBr heterojunction with significantly improved photocatalytic activity under visible light. J. Alloys Compd. 2019, 802, 301–309. [Google Scholar] [CrossRef]
- Bai, Z.; Ba, X.; Jia, R.; Liu, B.; Xiao, Z.; Zhang, X. Preparation and characterization of bismuth silicate nanopowders. Front. Chem. China 2007, 2, 131–134. [Google Scholar] [CrossRef]
- Dou, L.; Jin, X.; Chen, J.; Zhong, J.; Li, J.; Zeng, Y.; Duan, R. One-pot solvothermal fabrication of S-scheme OVs-Bi2O3/Bi2SiO5 microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants. Appl. Surf. Sci. 2020, 527, 146775. [Google Scholar] [CrossRef]
- Kovaleva, E.A.; Vodyankina, O.V.; Svetlichnyi, V.A. Interface features and electronic structure of Bi2SiO5/β-Bi2O3 heterojunction. Proc. SPIE 2021, 12086, 120860F. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Liu, J.; Zhang, Y.; Long, Y.; Li, L.; Zhang, S.; Wang, L.; Jiang, F. Self-assembly of efficient flower-like Bi2SiO5 photocatalyst through Pt modification. J. Photochem. Photobiol. A 2019, 382, 111920. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Y.; Wang, Z.; Hu, C.; Shi, B.; Cao, X. Porous β-Bi2O3 with multiple vacancy associates on highly exposed active {220} facets for enhanced photocatalytic activity. Appl. Catal. B 2020, 265, 118563. [Google Scholar] [CrossRef]
- Zou, C.D.; Gao, Y.L.; Yang, B.; Zhai, Q.J. Melting and undercooling of bismuth nanocrystals by solvothermal synthesis. Physica B 2009, 404, 4045–4050. [Google Scholar] [CrossRef]
- Yastrebinskii, R.N.; Bondarenko, G.G.; Pavlenko, A.V. Synthesis of stable bismuth silicate with sillenite structure in the Na2O–Bi2O3–SiO2 system. Inorg. Mater. Appl. Res. 2018, 9, 221–226. [Google Scholar] [CrossRef]
- Yolchinyan, S.A.; Hobosyan, M.A.; Martirosyan, K.S. Tailoring bismuth oxide flower-, bowtie- and brushwood-like structures through microfluidic synthesis. Mater. Chem. Phys. 2018, 207, 330–336. [Google Scholar] [CrossRef]
- Steele, J.A.; Lewis, R.A. In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands. Opt. Mater. Express 2014, 4, 2133–2142. [Google Scholar] [CrossRef]
- Depablos-Rivera, O.; Bouyanfif, H.; Zeinert, A.; Le Marrec, F.; Rodil, S.E. Synthesis of Bi2SiO5 thin films by confocal dual magnetron sputteringannealing route. Thin Solid Films 2019, 688, 137258. [Google Scholar] [CrossRef]
- Park, J.Y.; Park, S.J.; Yang, H.K. Investigation of red-emitting Bi4Si3O12:Eu3+ phosphor underthe deep UV irradiation as a novel material for white lightand color tunable emission. Optik 2018, 166, 69–76. [Google Scholar] [CrossRef]
- Mihailova, B.; Gospodinov, M.; Konstantinov, L. Raman spectroscopy study of sillenites. I. Comparison between Bi12(Si,Mn)O20 single crystals. J. Phys. Chem. Solids 1999, 60, 1821–1827. [Google Scholar] [CrossRef]
- Derhachov, M.; Moiseienko, V.; Kutseva, N.; Abu Sal, B.; Holze, R.; Pliaka, S.; Yevchyk, A. Structure, optical and electric properties of opal-bismuth silicate nanocomposites. Acta Phys. Pol. A 2018, 133, 847–850. [Google Scholar] [CrossRef]
- Guo, H.W.; Wang, X.F.; Gao, D.N. Non-Isothermal Crystallization Kinetics and Phase Transformation of Bi2O3-SiO2 Glass-Ceramics. Sci. Sinter. 2021, 43, 353–362. [Google Scholar] [CrossRef]
- Al-Keisy, A.; Ren, L.; Zheng, T.; Xu, X.; Higgins, M.; Hao, W.; Du, Y. Enhancement of charge separation in ferroelectric heterogeneous photocatalyst Bi4(SiO4)3/Bi2SiO5 nanostructures. Dalton Trans. 2017, 46, 15582–15588. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Jia, C.; Jiang, Y.; Wang, X. Synthesis of Bi4Si3O12 powders by a sol–gel method. Mater. Chem. Phys. 2012, 133, 1003–1005. [Google Scholar] [CrossRef]
- Lazarevic, Z.; Kostic, S.; Radojevic, V.; Romcevic, M.; Gilic, M.; Petrovic-Damjanovic, M.; Romcevic, N. Raman spectroscopy of bismuth silicon oxide single crystals grown by the Czochralski technique. Phys. Scr. 2013, T157, 014046. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A 2000, 173, 1–38. [Google Scholar] [CrossRef]
- Bergna, H.E. Colloid Chemistry of Silica. An Overview. In Advances in Chemistry; Comstock, M.J., Ed.; American Chemical Society: Washington, DC, USA, 1994; Volume 234, pp. 1–47. [Google Scholar] [CrossRef]
- Back, M.; Trave, E.; Zaccariello, G.; Cristofori, D.; Canton, P.; Benedetti, A.; Riello, P. Bi2SiO5@g-SiO2 upconverting nanoparticles: A bismuth-driven core–shell self-assembly mechanism. Nanoscale 2019, 11, 675–687. [Google Scholar] [CrossRef]
- Isik, M.; Delice, S.; Gasanly, N.M.; Darvishov, N.H.; Bagiev, V.E. Temperature-dependent band gap characteristics of Bi12SiO20 single crystals. J. Appl. Phys. 2019, 126, 245703. [Google Scholar] [CrossRef]
- Liu, D.; Yao, W.; Wang, J.; Liu, Y.; Zhang, M.; Zhu, Y. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5 photocatalyst. Appl. Catal. B 2015, 172–173, 100–107. [Google Scholar] [CrossRef]
- Naing, H.H.; Li, Y.; Ghasemi, J.B.; Wang, J.; Zhang, G. Enhanced visible-light-driven photocatalysis of in-situ reduced of bismuth on BiOCl nanosheets and montmorillonite loading: Synergistic effect and mechanism insight. Chemosphere 2022, 304, 135354. [Google Scholar] [CrossRef]
- Huang, Y.; Kang, S.; Yang, Y.; Qin, H.; Ni, Z.; Yang, S.; Li, X. Facile synthesis of Bi/Bi2WO6 nanocomposite with enhancedphotocatalytic activity under visible light. Appl. Catal. B 2016, 196, 89–99. [Google Scholar] [CrossRef]
- Arif, A.F.; Taniguchi, S.; Izawa, T.; Kamikubo, K.; Iwasaki, H.; Ogi, T. Microwave-assisted synthesis of C/SiO2 composite with controllable silica nanoparticle size. ACS Omega 2018, 3, 4063–4069. [Google Scholar] [CrossRef] [PubMed]
- Sheykhnazari, S.; Tabarsa, T.; Ashori, A.; Ghanbari, A. Bacterial cellulose composites loaded with SiO2 nanoparticles: Dynamic-mechanical and thermal properties. Int. J. Biol. Macromol. 2016, 93, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.X.; Abdullah, H.; Kuo, D.H.; Leu, S.-J.; Gultom, N.S.; Su, C.H. A comparison study of SiO2/nano metal oxide composite sphere for antibacterial application. Compos. Part B 2018, 133, 166–176. [Google Scholar] [CrossRef]
- Ullah, R.; Deb, B.K.; Mollah, M.Y.A. Synthesis and characterization of silica coated iron-oxide composites of different ratios. Int. J. Compos. Mater. 2014, 4, 135–145. [Google Scholar] [CrossRef]
- Liang, X.; Wang, X.; Ren, H.; Jiang, S.; Wang, L.; Liu, S. Gold nanoparticle decorated graphene oxide/silica composite stationary phase for high-performance liquid chromatography. J. Sep. Sci. 2014, 37, 1371–1379. [Google Scholar] [CrossRef]
- Hakamy, A. Influence of SiO2 nanoparticles on the microstructure, mechanical properties, and thermal stability of Portland cement nanocomposites. J. Taibah Univ. Sci. 2021, 15, 909–917. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Chen, B.; Cheng, K.; Wang, J.; Zhang, J.; Song, H. Promotion of phenol photodecomposition and the corresponding decomposition mechanism over g-C3N4/TiO2 nanocomposites. Appl. Surf. Sci. 2018, 453, 320–329. [Google Scholar] [CrossRef]
- Fakhrutdinova, E.D.; Shabalina, A.V.; Gerasimova, M.A.; Nemoykina, A.L.; Vodyankina, O.V.; Svetlichnyi, V.A. Highly defective dark nano titanium dioxide: Preparation via pulsed laser ablation and application. Materials 2020, 13, 2054. [Google Scholar] [CrossRef]
- Schlesinger, M.; Weber, M.; Schulze, S.; Hietschold, M.; Mehring, M. Metastable β-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. Chem. Open 2013, 2, 146–155. [Google Scholar] [CrossRef]
- Leng, D.; Wang, T.; Du, C.; Pei, X.; Wan, Y.; Wang, J. Synthesis of β-Bi2O3 nanoparticles via the oxidation of Bi nanoparticles: Size, shape and polymorh control, anisotropic thermal expansion, and visible-light photocatalytic activity. Ceram. Int. 2020, 48, 18270–18277. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Zhang, S.; Long, Y.; Li, L.; Zheng, Z.; Wu, S.; Zhou, L.; Hei, Y.; Luo, L.; et al. One-step synthesis of Bi4Ti3O12/Bi2O3/Bi12TiO20 spherical ternary heterojunctions with enhanced photocatalytic properties via sol-gel method. Solid State Sci. 2020, 100, 106098. [Google Scholar] [CrossRef]
- Lu, H.; Hao, Q.; Chen, T.; Zhang, L.; Chen, D.; Ma, C.; Yao, W.; Zhu, Y. A high-performance Bi2O3/Bi2SiO5 p-n heterojunction photocatalyst induced by phase transition of Bi2O3. Appl. Catal. B 2018, 237, 59–67. [Google Scholar] [CrossRef]
- Yadav, A.A.; Kang, S.W.; Hunge, Y.M. Photocatalytic degradation of Rhodamine B using graphitic carbon nitride photocatalyst. J. Mater. Sci. Mater. Electron. 2021, 32, 15577–15585. [Google Scholar] [CrossRef]
- Isari, A.A.; Payan, A.; Fattahi, M.; Jorfi, S.; Kakavandi, B. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 2018, 462, 549–564. [Google Scholar] [CrossRef]
- Hu, X.; Mohamood, T.; Ma, W.; Chen, C.; Zhao, J. Oxidative decomposition of Rhodamine B dye in the presence of VO2+ and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization. J. Phys. Chem. B 2006, 110, 26012–26018. [Google Scholar] [CrossRef]
- Dou, L.; Zhong, J.; Li, J.; Luo, J.; Zeng, Y. Fabrication of Bi2SiO5 hierarchical microspheres with an efficient photocatalytic performance for rhodamine B and phenol removal. Mater. Res. Bull. 2019, 116, 50–58. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Sun, S.; Xu, J.; Shang, M.; Ren, J. Hybrid Bi2SiO5 mesoporous microspheres with light response for environment decontamination. Appl. Catal. B 2010, 100, 97–101. [Google Scholar] [CrossRef]
- Liu, D.; Cai, W.; Wang, Y.; Zhu, Y. Constructing a novel Bi2SiO5/BiPO4 heterostructure with extended light response range and enhanced photocatalytic performance. Appl. Catal. B 2018, 236, 205–211. [Google Scholar] [CrossRef]
- Gu, W.; Teng, F.; Liu, Z.; Liu, Z.; Yang, J.; Teng, Y. Synthesis and photocatalytic properties of Bi2SiO5 and Bi12SiO20. J. Photochem. Photobiol. A 2018, 353, 395–400. [Google Scholar] [CrossRef]
- Sarkar, D.; Paliwal, K.S.; Ganguli, S.; Praveen, A.; Saha, D.; Mahalingam, V. Engineering of oxygen vacancy as defect sites in silicates for removal of diverse organic pollutants and enhanced aromatic alcohol oxidation. J. Environ. Chem. Eng. 2021, 9, 105134. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Zhang, M.; Liu, Y.; Zhu, Y. A superior photocatalytic performance of a novel Bi2SiO5 flower-like microsphere via a phase junction. Nanoscale 2014, 6, 15222–15227. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Q.; Wen, Z.H.; Tian, S.H.; Shan, L.J.; Xiong, Y. Citric acid-assisted hydrothermal synthesis of a self-modified Bi2SiO5/Bi12SiO20 heterojunction for efficient photocatalytic degradation of aqueous pollutants. Catal. Sci. Technol. 2018, 8, 1051–1061. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Sun, S.; Jiang, D.; Gao, E. Solar light photocatalysis using Bi2O3/Bi2SiO5 nanoheterostructures formed in mesoporous SiO2 microspheres. CrystEngComm 2013, 15, 10043–10048. [Google Scholar] [CrossRef]
- Zhang, Q.; Ravindra; Xia, H.; Zhang, L.; Zeng, K.; Xu, Y.; Xin, C. Microwave hydrothermal synthesis of a Bi2SiO5/Bi12SiO20 heterojunction with oxygen vacancies and multiple charge transfer for enhanced photocatalytic activity. Appl. Surf. Sci. 2022, 581, 152337. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Uchida, A.; Tominaga, Y.; Fujii, Y.; Yadav, A.A.; Kang, S.-W.; Suzuki, N.; Shitanda, I.; Kondo, T.; Itagaki, M.; et al. Visible light-assisted photocatalysis using spherical-shaped BiVO4 photocatalyst. Catalysts 2021, 11, 460. [Google Scholar] [CrossRef]
- Shen, Y.; Huang, M.; Huang, Y.; Lin, J.; Wu, J. The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation. J. Alloys Compd. 2010, 496, 287–292. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, J.; Chen, F. Hydrothermal synthesis of nanostructures Bi12TiO20 and their photocatalytic activity on acid orange 7 under visible light. Chemosphere 2010, 78, 1350–1355. [Google Scholar] [CrossRef]
Sample | Tauc Method, Type of Transition | DASF Method | |
---|---|---|---|
Direct Permitted (n = 1/2) | Indirect Permitted (n = 2) | ||
BSO | - | - | - |
BSO_2 | - | - | - |
BSO_3 | 3.1 (Bi2SiO5) | 2.3 (β-Bi2O3) | 2.5 (β-Bi2O3)/3.4 (Bi2SiO5) |
BSO_4 | 3.2 (Bi2SiO5) | 2.3 (β-Bi2O3) | 2.5 (β-Bi2O3)/3.5 (Bi2SiO5) |
BSO_5 | 3.6 (Bi2SiO5) | 2.2 (β-Bi2O3) | 2.4 (β-Bi2O3)/3.8 (Bi2SiO5) |
BSO_6 | 3.7 (Bi2SiO5) | - | -/3.8 (Bi2SiO5) |
BSO_8 | 2.3 (Bi12SiO20) | 3.2 (Bi4Si3O12) | 2.3 (Bi12SiO20)/3.4 (Bi4Si3O12) |
BSO_hν | 3.6 (Bi2SiO5) | - | -/3.6 (Bi2SiO5) |
BSO_hν_2 | 3.5 (Bi2SiO5) | - | -/3.5 (Bi2SiO5) |
BSO_hν_3 | 3.5 (Bi2SiO5) | - | -/3.4 (Bi2SiO5) |
BSO_hν_4 | 3.5 (Bi2SiO5) | - | -/3.3 (Bi2SiO5) |
BSO_hν_5 | 3.7 (Bi2SiO5) | - | -/3.6 (Bi2SiO5) |
BSO_hν_6 | 3.7 (Bi2SiO5) | - | -/3.7 (Bi2SiO5) |
BSO_hν_8 | 2.3 (Bi12SiO20) | 3.1 (Bi4Si3O12) | 2.3 (Bi12SiO20)/3.3 (Bi4Si3O12) |
Sample | Phenol Kapp | Rd B | Sample | Phenol Kapp | Rd B | ||
---|---|---|---|---|---|---|---|
KN | Kapp | KN | Kapp | ||||
BSO | – | – | – | BSO_hν | 2.1 | 4.8 | 1.5 |
BSO_3 | 0.6 | 0.6 | 0.2 | BSO_hν_3 | 3.0 | 2.2 | 1.1 |
BSO_4 | 3.9 | 0.7 | 0.2 | BSO_hν_4 | 2.7 | 9.3 | 0.6 |
BSO_5 | 1.2 | 3.1 | 0.3 | BSO_hν_5 | 2.7 | 2.8 | 0.8 |
BSO_6 | 2.1 | 3.1 | 0.6 | BSO_hν_6 | 2.7 | 1.0 | 0.6 |
BSO_7 | 2.1 | 0.5 | 0.2 | BSO_hν_7 | 1.5 | 4.8 | 0.2 |
BSO_8 | – | <0.1 | – | BSO_hν_8 | – | <0.1 | – |
Photocatalysts | Preparation Method | Photocatalytic Experiment Conditions | Photocatalytic Efficiency | Ref. |
---|---|---|---|---|
Bi2SiO5 and Bi4(SiO4)3 nanofibers | Electrospinning technique | 250 W high-pressure mercury lamp (311 mW/cm2); 1.5 g catalyst; methyl orange (MO), 12.5 mmol/L; safranin O (SO), 12.5 mmol/L | Max. kapp for Bi4(SiO4)3: 0.273 min–1 (MO), 0.409 min–1 (SO); for Bi2SiO5 0.149 min–1 (MO), 0.301 min–1 (SO) | [15] |
Bi2SiO5, Bi12SiO20, Bi4Si3O12 | Controlled hydrothermal method | 15 W Xe lamp (0.312 W/cm2); 0.1 mg/mL catalyst; crystal violet (CV), 10 ppm | Max kapp for Bi2SiO5: 2.57 × 10−2 h–1 | [18] |
Bi2SiO5/BiOBr type-II heterojunction | In-situ partial ion exchange strategy | 300 W Xe lamp; 0.6 mg/mL catalyst; RhB, 2.0 × 10−5 mol L−1 | Max kapp for sample Bi2SiO5/BiOBr-90: 0.07522 min–1 | [28] |
OVs-Bi2O3/Bi2SiO5 microsphere heterojunctions | One-pot solvothermal synthesis | 500 W Xe lamp; 1 mg/mL catalyst; MO, 10 mg/L; phenol (PhOH), 10 mg/L | Max kapp for sample (1.5%) Bi2O3/Bi2SiO5: 0.159 h–1 (MO), 0.059 h–1 (PhOH) | [30] |
The flower-like Pt/Bi2SiO5 | Hydrothermal-photoreduction method | 20 W Hg lamp; 0.5 mg/mL catalyst; 17α-ethynylestradiol (EE2), 3 mg/L | Max kapp for 0.2Pt/BSO: 0.3629 min−1 | [32] |
Bi4(SiO4)3/Bi2SiO5 nanosheet | One-pot hydrothermal process. | 300 W Xe lamp; 1 mg/mL catalyst; RhB, 10 mg L−1; PhOH, 20 mg L−1 | Max kapp for BSO-HNS: 0.064 min−1 (RhB), and 35% decomposition of PhOH per 150 min irradiation | [43] |
Bi4O5Br2/Bi24O31Br10/Bi2SiO5 heterostructure | In situ ion exchange reaction | 500 W Xe lamp (38 mW cm−2); 0.6 mg/mL catalyst; PhOH, 5 mg/L | Max kapp for Bi4O5Br2/Bi24O31Br10/Bi2SiO5 (S1): 0.07 h–1 | [50] |
Bi2O3/Bi2SiO5 p-n heterojunction | One-step calcination method from Bi(NO3)3 and SiO2 | 500 W Xe lamp (35 mW/cm2); 2 mg/mL catalyst; methylene blue (MB), 100 ppm; PhOH, 10 ppm; 2,4-dichlorophenol (2,4-DCP), 10 ppm | Max kapp for Bi2O3/Bi2SiO5 (Bi/Si-4): 0.26 h–1 (MB), 0.2 h–1 (PhOH), 1 h−1 (2,4-DCP) | [64] |
3D Bi2SiO5 hierarchical microspheres | Solvothermal method | 300 W Hg lamp; 1 mg/mL catalyst; RhB, 10 mg/L; PhOH, 20 mg/L | Decolorization of RhB 90% and decomposition of PhOH 44% per 30 min | [68] |
Hybrid Bi2SiO5 mesoporous microspheres | Hydrothermal method with “Postsynthetic modification” | 500 W Xe lamp; 1 g/L catalyst; tetraethylated RhB, 1 × 10−5 M | Degradation of RhB 80% per 2 h for mesoporous Bi2SiO5 | [69] |
Bi2SiO5/BiPO4 heterostructure | Co-precipitation hydrothermal method | 500 W xenon lamp; 0.6 mg/mL catalyst; PhOH, 10 ppm; MB, 2 × 10−5 M | Max kapp: 0.00946 min−1 (PhOH), 0.00953 min−1 (MB) | [70] |
Layered Bi2SiO5 and body-centered Bi12SiO20 | Hydrothermal method | 300 W Xe arc lamp (>420 nm and ≤420 nm); 0.5 mg/mL catalyst; rhodamine B (RhB), 10 mg/L | Max kapp: 0.004 min–1 (>420 nm) | [71] |
Bi2SiO5-Br, Bi2SiO5-Cl nanoparticles | Hydrothermal method | 137 W Xe lamp; 1 mg/mL catalyst; RdB, 50 μM; tetracycline, 20 ppm | Max kapp for Bi2SiO5-Br: 0.087 min−1 (RdB), Degradation tetracycline 83% per 180 min | [72] |
Bi2SiO5 flower-like microsphere | Ion exchange method | 100 W high pressure Hg lamp (λ ≈ 365 nm), 500 W Xe lamp (λ ≥ 420 nm); 0.6 mg/mL catalyst; PhOH, 5 ppm | Max kapp: 1.6 h–1 (λ ≈ 365 nm), 0.4 h–1 (λ ≥ 420 nm) | [73] |
Self-modified Bi2SiO5/Bi12SiO20 heterojunction | Citric acid-assisted hydrothermal method | 100 W high pressure Hg lamp; 1 mg/mL catalyst; acid orange 7 (AO7), 20 mg L−1 | Max kapp: 0.1694 min−1 | [74] |
Mesoporous Bi2O3/Bi2SiO5@ SiO2 composite | Hydrothermal method | 500 W Xe arc lamp; 0.5 g/L catalyst; bisphenol A (BPA), 20 mg L−1 | Degradation BPA 90% per 120 min | [75] |
Bi2SiO5/Bi12SiO20 heterojunction | Microwave hydrothermal synthesis | 250 W Hg lamp; 0.05 mg/mL catalyst; RhB) 10 mg/L; MB, 20 mg/L | Max kapp: 0.095min−1 (RhB), 0.083 min−1 (MB) | [76] |
Spherical-Shaped BiVO4 | Hydrothermal method | 300 W Xe lamp; 1 mg/mL catalyst; crystal violet, 0.5 mM | Max kapp: 5.88 × 10−6 s–1 | [77] |
BiVO4 | Hydrothermal method | 250 W metal halide lamp; 2 mg/mL catalyst; MB, 10 mg/L | Max kapp: 0.015 min−1 | [78] |
Nanostructures Bi12TiO20 | Hydrothermal method | 1000 W halogen lamp; 1 mg/mL catalyst; AO7, 20 mg L−1 | Max kapp: 0.327 h–1 | [79] |
β-Bi2O3/Bi2SiO5, Bi2SiO5, Bi12SiO20/Bi4Si3O12 | LAL, powder annealing | 51 mW LED (375 nm); 0.5 mg/mL catalyst; Rd B, 5 µM; PhOH, 50 µM | Max Kapp 3.9 μM/h Bi2O3/Bi2SiO5, PhOH); 1.5 μM/h (amorphous Bi2SiO5, Rd B) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabalina, A.V.; Golubovskaya, A.G.; Fakhrutdinova, E.D.; Kulinich, S.A.; Vodyankina, O.V.; Svetlichnyi, V.A. Phase and Structural Thermal Evolution of Bi–Si–O Catalysts Obtained via Laser Ablation. Nanomaterials 2022, 12, 4101. https://doi.org/10.3390/nano12224101
Shabalina AV, Golubovskaya AG, Fakhrutdinova ED, Kulinich SA, Vodyankina OV, Svetlichnyi VA. Phase and Structural Thermal Evolution of Bi–Si–O Catalysts Obtained via Laser Ablation. Nanomaterials. 2022; 12(22):4101. https://doi.org/10.3390/nano12224101
Chicago/Turabian StyleShabalina, Anastasiia V., Alexandra G. Golubovskaya, Elena D. Fakhrutdinova, Sergei A. Kulinich, Olga V. Vodyankina, and Valery A. Svetlichnyi. 2022. "Phase and Structural Thermal Evolution of Bi–Si–O Catalysts Obtained via Laser Ablation" Nanomaterials 12, no. 22: 4101. https://doi.org/10.3390/nano12224101
APA StyleShabalina, A. V., Golubovskaya, A. G., Fakhrutdinova, E. D., Kulinich, S. A., Vodyankina, O. V., & Svetlichnyi, V. A. (2022). Phase and Structural Thermal Evolution of Bi–Si–O Catalysts Obtained via Laser Ablation. Nanomaterials, 12(22), 4101. https://doi.org/10.3390/nano12224101