Dielectric Strength of Nanofluid-Impregnated Transformer Solid Insulation
Abstract
:1. Introduction
2. Materials and Preparation of the Samples
2.1. Cellulose Insulation
2.2. Preparation of the Nanofluids
2.3. Impregnation of Cellulose Samples
3. Dielectric Strength in AC
3.1. Test Setup
3.2. Results of AC Dielectric Strength Tests
3.3. Discussion
- The decrease in the maximum electric field in the fluid, caused by the change in the permittivity of the materials, reduces the probability of streamer inception. Note that the maximum electric field in the NF was 15% smaller than the maximum field in the most stressed area of the MO.
- The presence of NPs in the NF hinders the streamer progression in it. This phenomenon was studied by several authors who attributed it to the accumulation of charges around the NPs [35] and to the reduction of the streamer speed, by the trapping and detrapping of charges in shallow traps, which increases sharply when MO is doped with NPs [36]. The improvement of the AC dielectric strength of the NF used in this work is 10%, according to previous works of the authors [12].
4. Lightning Impulse Tests
4.1. Testing Procedure
4.2. Impulse Dielectric Strength Results
4.3. Discussion on Impulse
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, D.; Beckett, C.; Brown, J.; Nielsen, S. Analysis and Mitigation of Australian and New Zealand Power Transformer Failures Resulting in Fires and Explosions. IEEE Electr. Insul. Mag. 2019, 35, 7–14. [Google Scholar] [CrossRef]
- Marks, J.; Martin, D.; Saha, T.; Krause, O.; Alibegovic-Memisevic, A.; Russell, G.; Buckley, G.; Chinnarajan, S.; Gibson, M.; MacArthur, T. An Analysis of Australian Power Transformer Failure Modes, and Comparison with International Surveys. In Proceedings of the 2016 Australasian Universities Power Engineering Conference (AUPEC), Brisbane, QLD, Australia, 25–28 September 2016; pp. 1–6. [Google Scholar]
- Martin, D.; Marks, J.; Saha, T. Survey of Australian Power Transformer Failures and Retirements. IEEE Electr. Insul. Mag. 2017, 33, 16–22. [Google Scholar] [CrossRef]
- Heathcote, M.J. Basic materials. In J & P Transformer Book; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Segal, V.; Raj, K. An Investigation of Power Transformer Cooling with Magnetic Fluids. Indian J. Eng. Mater. S 1998, 5, 416–422. [Google Scholar]
- Wang, X.; Xu, X. Thermal Conductivity of Nanoparticle–fluid Mixture. J. Thermophys. Heat Transf. 1999, 13, 474–480. [Google Scholar] [CrossRef]
- Özerinç, S.; Kakaç, S.; Yazıcıoğlu, A.G. Enhanced Thermal Conductivity of Nanofluids: A State-of-the-art Review. Microfluid. Nanofluid. 2010, 8, 145–170. [Google Scholar] [CrossRef]
- Du, Y.; Lv, Y.; Li, C.; Chen, M.; Zhong, Y.; Zhou, J.; Li, X.; Zhou, Y. Effect of Semiconductive Nanoparticles on Insulating Performances of Transformer Oil. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 770–776. [Google Scholar]
- Dai, J.; Dong, M.; Li, Y.; Zhou, J. Influence of Nanoparticle Concentration on the Frequency Domain Spectroscopy Properties of Transformer Oil-based Nanofluids. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 587–590. [Google Scholar]
- Primo, V.A.; Pérez, D.; García, B.; Burgos, J.C. Analysing the impact of Moisture on the AC Breakdown Voltage of Fe3O4 Based Nanodielectric Fluids. In Proceedings of the IEEE International Conference on Dielectrics, Budapest, Hungary, 1–5 July 2018; pp. 1–3. [Google Scholar]
- Peppas, G.D.; Bakandritsos, A.; Charalampakos, V.P.; Pyrgioti, E.C.; Tucek, J.; Zboril, R.; Gonos, I.F. Ultrastable Natural Ester-Based Nanofluids for High Voltage Insulation Applications. ACS Appl. Mater. Interfaces 2016, 8, 25202–25209. [Google Scholar] [CrossRef] [PubMed]
- Primo, V.A.; García, B.; Burgos, J.C.; Pérez, D. AC breakdown voltage of Fe3O4 based nanodielectric fluids. Part 2: Analysis of fluids with high moisture content. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 360–367. [Google Scholar] [CrossRef]
- Danikas, M.G.; Bakandritsos, A.; Peppas, G.D.; mpakos, V.P.; Pyrgioti, E.C.; Gonos, I.F. Statistical investigation of AC breakdown voltage of nanofluids compared with mineral and natural ester oil. IET Sci. Meas. Technol. 2016, 10, 644–652. [Google Scholar] [CrossRef]
- Khaled, U.; Beroual, A. AC Dielectric Strength of Synthetic Ester-Based Fe3O4, Al2O3 and SiO2 Nanofluids – Conformity with Normal and Weibull Distributions. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 625–633. [Google Scholar] [CrossRef]
- Primo, V.A.; García, B.; Burgos, J.C.; Pérez-Rosa, D. Investigation of the Lightning Impulse Breakdown Voltage of Mineral Oil based Fe3O4 Nanofluids. Coatings 2019, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Nazari, M.; Rasoulifard, M.H.; Hosseini, H. Dielectric breakdown strength of magnetic nano fl uid based on insulation oil after impulse test. J. Magn. Magn. Mater. 2016, 399, 1–4. [Google Scholar] [CrossRef]
- Shukla, G.; Aiyer, H. Thermal Conductivity Enhancement of Transformer Oil Using Functionalized Nanodiamonds. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2185–2190. [Google Scholar] [CrossRef]
- Olmo, C.; Méndez, C.; Ortiz, F.; Delgado, F.; Ortiz, A. Titania nanofluids based on natural ester: Cooling and insulation properties assessment. Nanomaterials 2020, 10, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, W. Nano Dielectric Fluids. U.S. Patent No. 2013/0285781, 31 October 2013. [Google Scholar]
- Tang, C.; Zhang, S.; Xie, J.; Lv, C. Molecular simulation and experimental analysis of Al2O3-nanoparticle-modified insulation paper cellulose. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1018–1026. [Google Scholar] [CrossRef]
- Mansour, D.E.A.; Elsaeed, A.M.; Izzularab, M.A. The role of interfacial zone in dielectric properties of transformer oil-based nanofluids. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3364–3372. [Google Scholar] [CrossRef]
- Pérez-Rosa, D.; García, B.; Burgos, J.C.; Febrero, A. Morphological analysis of transformer Kraft paper impregnated with dielectric nanofluids. Cellulose 2020, 27, 8963–8975. [Google Scholar] [CrossRef]
- Pérez-Rosa, D.; García, B.; Burgos, J.C. Influence of Nanoparticles on the Degradation Processes of Ester-Based Transformer Insulation Systems. Energies 2022, 15, 1520. [Google Scholar] [CrossRef]
- Rafiq, M.; Lv, Y.; Li, C.; Sun, Q. Effect of Al2O3 nanorods on the performance of oil-impregnated pressboard insulation. Electr. Eng. 2020, 102, 715–724. [Google Scholar] [CrossRef]
- Huang, M.; Wang, L.; Ge, Y.; Lv, Y.Z.; Qi, B.; Li, C.R. Creeping flashover characteristics improvement of nanofluid/pressboard system with TiO2 nanoparticles. AIP Adv. 2018, 8, 035205. [Google Scholar] [CrossRef] [Green Version]
- Shan, B.; Huang, M.; Ying, Y.; Niu, M.; Sun, Q.; Lv, Y.; Li, C.; Qi, B.; Xing, Z. Research on creeping flashover characteristics of nanofluid-impregnated pressboard modified based on Fe3O4 nanoparticles under lightning impulse voltages. Nanomaterials 2019, 9, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maharana, M.; Baruah, N.; Nayak, S.K.; Sahoo, N. Comparative study of mechanical and electrical strength of kraft paper in nanofluid based transformer oil and mineral oil. In Proceedings of the 2017 International Symposium on Electrical Insulating Materials (ISEIM), Toyohashi, Japan, 11–15 September 2017; pp. 646–649. [Google Scholar]
- Shan, B.; Wu, Y.; Song, H.; Xing, Z.; Huang, M.; Liu, B.; Lv, Y.; Li, C. Research on DC Breakdown Performance of Nanofluid-impregnated Pressboard Based on TiO2 Nanoparticles. In Proceedings of the 2020 IEEE 3rd International Conference on Dielectrics, ICD 2020, Valencia, Spain, 5–31 July 2020; pp. 169–172. [Google Scholar]
- Liao, R.; Lv, C.; Yang, L.; Zhang, Y.; Wu, W.; Tang, C. The insulation properties of oil-impregnated insulation paper reinforced with nano-TiO2. J. Nanomater. 2013, 2013, 373959. [Google Scholar] [CrossRef]
- Franchek, M.; Levin, A. Insulations® DPE. Transform. Mag. 2016, 3. [Google Scholar]
- Primo, V.A.; Pérez-Rosa, D.; García, B.; Cabanelas, J.C. Evaluation of the Stability of Dielectric Nanofluids for Use in Transformers under Real Operating Conditions. Nanomaterial 2019, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- IEC Standard 60243-1; Electric Strength of Insulating Materials Test Methods-Part 1: Tests at Power Frequencies. IEC: Geneva, Switzerland, 2013. Available online: https://webstore.iec.ch/publication/1101 (accessed on 20 October 2022).
- IEC Standard 60641; Pressboard and Presspaper for Electrical Purposes. IEC: Geneva, Switzerland, 2008. Available online: https://webstore.iec.ch/publication/2762 (accessed on 20 October 2022).
- Pérez-Rosa, D.; García, B.; Burgos, J.C. Dielectric Response of the Oil-Paper Insulation System in Nanofluid-Based Transformers. IEEE Access 2021, 9, 83797–83805. [Google Scholar] [CrossRef]
- Hwang, J.W.G. Elucidating the Mechanisms Behind Pre-Breakdown Phenomena in Transformer Oil Systems. Ph.D. Thesis, Massachusetts Institute of Technology, Boston, MA, USA, 2010. [Google Scholar]
- Du, Y.; Lv, Y.; Li, C.; Chen, M.; Zhou, J.; Li, X.; Zhou, Y.; Tu, Y. Effect of electron shallow trap on breakdown performance of transformer oil-based nanofluids. J. Appl. Phys. 2011, 110, 104104. [Google Scholar] [CrossRef]
- IEC Standard 60243-3; Electric Strength of Insulating Materials Test Methods-Part 3: Additional Requirements for 1,2/50 S impulse Tests. IEC: Geneva, Switzerland, 2013. Available online: https://webstore.iec.ch/publication/1103 (accessed on 20 October 2022).
Ref | NPs | Cellulose Material | Tests Performed | Improvement in BDV | Comments |
---|---|---|---|---|---|
[24] | AlO | Pressboard | Creeping flashover AC | 7% | - |
[24] | AlO | Pressboard | Creeping flashover impulse | 14% Negative 15% Positive | - |
[25] | TiO | Pressboard | Creeping flashover AC | 18.8% | NP sizes 5 to 30 nm |
[26] | FeO | Pressboard | Lightning impulse creeping flashover | 15–17% | Two distance for electrodes used |
[27] | h-BN | Kraft paper | AC DS | 2% | Compared fresh and aged samples |
[28] | TiO | Pressboard | DC DS | 12.9% | Several NP sizes 5 to 15 nm |
[29] | TiO | NP-doped Kraft paper | AC BDV | 20.83% | Several wt% of NP |
Weibull Parameters | MO-Paper | NF-Paper |
---|---|---|
a (kV/mm) | 69.2 | 79.7 |
b | 6.5 | 11.7 |
AC Dielectric Strength | MO-Paper | NF-Paper |
---|---|---|
Mean (kV/mm) | 59.8 | 75.3 |
Std dv | 11.24 | 5.47 |
Fail prob 1% (kV/mm) | 34.0 | 53.7 |
Fail prob 25% (kV/mm) | 57.1 | 71.6 |
Fail prob 50% (kV/mm) | 65.4 | 77.2 |
Fail prob 90% (kV/mm) | 78.7 | 85.6 |
Kraft Paper-MO | Kraft Paper-NF | |||
---|---|---|---|---|
Oil | Paper | Oil | Paper | |
Relative permittivity | 2.2 | 3.9 | 3.2 | 4.9 |
Maximum E (kV/mm) | 114.42 | 64.95 | 99.30 | 64.86 |
Voltage (kV) | Impulses Applied | Number of Breakdowns |
---|---|---|
7 | 3 | 0 |
8 | 15 | 0 |
9 | 18 | 2 |
10 | 11 | 3 |
11 | 8 | 1 |
12 | 1 | 1 |
Voltage (kV) | Impulses Applied | Number of Breakdowns |
---|---|---|
7 | 3 | 0 |
8 | 18 | 0 |
9 | 12 | 1 |
10 | 6 | 3 |
11 | 3 | 1 |
12 | 1 | 1 |
Weibull Parameters | MO-Impregnated Paper | NF-Impregnated Paper |
---|---|---|
a (kV/mm) | 127.9 | 129.8 |
b | 10.3 | 10.2 |
Impulse Strength | MO-Impregnated Paper | NF-Impregnated Paper |
---|---|---|
Mean (kV/mm) | 121.8 | 124.1 |
Std dv (kV/mm) | 7.45 | 8 |
Fail prob 1% (kV/mm) | 81.9 | 82.5 |
Fail prob 25% (kV/mm) | 113.4 | 114.8 |
Fail prob 50% (kV/mm) | 123.4 | 125.2 |
Fail prob 90% (kV/mm) | 138.7 | 140.9 |
MO | NF 0.2 g/L | NF 0.6 g/L | |
---|---|---|---|
Impulse BDV (kV) | 34.37 | 35.7 | 51.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Rosa, D.; Montero, A.; García, B.; Burgos, J.C. Dielectric Strength of Nanofluid-Impregnated Transformer Solid Insulation. Nanomaterials 2022, 12, 4128. https://doi.org/10.3390/nano12234128
Pérez-Rosa D, Montero A, García B, Burgos JC. Dielectric Strength of Nanofluid-Impregnated Transformer Solid Insulation. Nanomaterials. 2022; 12(23):4128. https://doi.org/10.3390/nano12234128
Chicago/Turabian StylePérez-Rosa, Daniel, Andrés Montero, Belén García, and Juan Carlos Burgos. 2022. "Dielectric Strength of Nanofluid-Impregnated Transformer Solid Insulation" Nanomaterials 12, no. 23: 4128. https://doi.org/10.3390/nano12234128
APA StylePérez-Rosa, D., Montero, A., García, B., & Burgos, J. C. (2022). Dielectric Strength of Nanofluid-Impregnated Transformer Solid Insulation. Nanomaterials, 12(23), 4128. https://doi.org/10.3390/nano12234128