High-Quality Ferromagnetic Josephson Junctions Based on Aluminum Electrodes
Abstract
:1. Introduction
2. Fabrication Process
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tafuri, F. Fundamentals and Frontiers of the Josephson Effect; Springer Series in Materials Science; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Soloviev, I.I.; Klenov, N.V.; Bakurskiy, S.V.; Kupriyanov, M.Y.; Gudkov, A.L.; Sidorenko, A.S. Beyond Moore’s technologies: Operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 2017, 8, 2689–2710. [Google Scholar] [CrossRef] [Green Version]
- Vettoliere, A.; Granata, C. Superconducting quantum magnetic sensing. In Quantum Materials, Devices, and Applications; Henini, M., Rodrigues, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 43–85. ISBN 978-0-12-820566-2. [Google Scholar]
- Richards, P.L.; Shen, T.-M. Superconductive devices for millimeter wave detection, mixing, and amplification. IEEE Trans. Electron Dev. 1980, 27, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.; Wilhelm, F. Superconducting quantum bits. Nature 2008, 453, 1031–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 2019, 6, 021318. [Google Scholar] [CrossRef] [Green Version]
- Oliver, W.; Welander, P. Materials in superconducting quantum bits. MRS Bull. 2013, 38, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Devoret, M.H.; Schoelkopf, R.J. Superconducting Circuits for Quantum Information: An Outlook. Science 2013, 339, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Neill, C.; Roushan, P.; Leung, N.; Fang, M.; Barends, R.; Kelly, J.; Campbell, B.; Chen, Z.; Chiaro, B.; et al. Qubit Architecture with High Coherence and Fast Tunable Coupling. Phys. Rev. Lett. 2014, 113, 220502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serniak, K.; Hays, M.; de Lange, G.; Diamond, S.; Shankar, S.; Burkhart, L.D.; Frunzio, L.; Houzet, M.; Devoret, M.H. Hot Nonequilibrium Quasiparticles in Transmon Qubits. Phys. Rev. Lett. 2018, 121, 157701. [Google Scholar] [CrossRef] [Green Version]
- Bilmes, A.; Megrant, A.; Klimov, P.; Weiss, G.; Martinis, J.M.; Ustinov, A.V.; Lisenfeld, J. Resolving the positions of defects in superconducting quantum bits. Sci. Rep. 2020, 10, 3090. [Google Scholar] [CrossRef] [Green Version]
- Koch, J.; Yu, T.M.; Gambetta, J.; Houck, A.A.; Schuster, D.I.; Majer, J.; Blais, A.; Devoret, M.H.; Girvin, S.M.; Schoelkopf, R.J. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 2007, 76, 042319. [Google Scholar] [CrossRef]
- Majer, J.; Chow, J.M.; Gambetta, J.M.; Koch, J.; Johnson, B.R.; Schreier, J.A.; Frunzio, L.; Schuster, D.I.; Houck, A.A.; Wallraff, A.; et al. Coupling superconducting qubits via a cavity bus. Nature 2007, 449, 443–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, D.I.; Blais, A.; Frunzio, L.; Huang, R.S.; Majer, J.; Kumar, S.; Girvin, S.M.; Schoelkopf, R.J. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 2004, 431, 162–167. [Google Scholar]
- Dolan, G.J. Offset masks for lift-off photoprocessing. Appl. Phys. Lett. 1977, 31, 337. [Google Scholar] [CrossRef]
- Osman, A.; Simon, J.; Bengtsson, A.; Kosen, S.; Krantz, P.; Lozano, D.; Scigliuzzo, M.; Delsing, P.; Bylander, J.; Fadavi Roudsari, A. Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits. Appl. Phys. Lett. 2021, 118, 064002. [Google Scholar] [CrossRef]
- Kroger, H.; Smith, L.N.; Jillie, D.W. Selective niobium anodization process for fabricating Josephson tunnel junctions. Appl. Phys. Lett. 1981, 39, 280–282. [Google Scholar] [CrossRef]
- Gurvitch, M.; Washington, M.A.; Huggins, H.A. High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Appl. Phys. Lett. 1983, 42, 472. [Google Scholar] [CrossRef]
- Vettoliere, A.; Satariano, R.; Ferraiuolo, R.; Di Palma, L.; Ahmad, H.G.; Ausanio, G.; Pepe, G.P.; Tafuri, F.; Montemurro, D.; Granata, C.; et al. Aluminum-ferromagnetic Josephson tunnel junctions for high quality magnetic switching devices. Appl. Phys. Lett. 2022, 120, 262601. [Google Scholar] [CrossRef]
- Larkin, T.I.; Bol’ginov, V.V.; Stolyarov, V.S.; Ryazanov, V.V.; Vernik, I.V.; Tolpygo, S.K.; Mukhanov, O.A. Ferromagnetic Josephson switching device with high characteristic voltage. Appl. Phys. Lett. 2012, 100, 222601. [Google Scholar] [CrossRef] [Green Version]
- Caruso, R.; Massarotti, D.; Bolginov, V.V.; Ben Hamida, A.; Karelina, L.N.; Miano, A.; Vernik, I.V.; Tafuri, F.; Ryazanov, V.V.; Mukhanov, O.A.; et al. RF assisted switching in magnetic Josephson junctions. J. Appl. Phys. 2018, 123, 133901. [Google Scholar] [CrossRef] [Green Version]
- Parlato, L.; Caruso, R.; Vettoliere, A.; Satariano, R.; Ahmad, H.G.; Miano, A.; Montemurro, D.; Salvoni, D.; Ausanio, G.; Tafuri, F.; et al. Characterization of scalable Josephson memory element containing a strong ferromagnet. J. Appl. Phys. 2020, 127, 193901. [Google Scholar] [CrossRef]
- Ahmad, H.G.; Brosco, V.; Miano, A.; Di Palma, L.; Arzeo, M.; Montemurro, D.; Lucignano, L.; Pepe, G.P.; Tafuri, F.; Fazio, R.; et al. Hybrid ferromagnetic transmon qubit: Circuit design, feasibility, and detection protocols for magnetic fluctuations. Phys. Rev. B 2022, 105, 214522. [Google Scholar] [CrossRef]
- Pankratov, A.L.; Revin, L.S.; Gordeeva, A.V.; Yablokov, A.A.; Kuzmin, L.S.; Il’ichev, E. Towards a microwave single-photon counter for searching axions. Npj Quantum Inf. 2022, 8, 61. [Google Scholar] [CrossRef]
- Gordeeva, A.V.; Pankratov, A.L.; Pugach, N.G.; Vasenko, A.S.; Zbrozhek, V.O.; Blagodatkin, A.V.; Pimanov, D.A.; Kuzmin, L.S. Record electron self-cooling in cold-electron bolometers with a hybrid superconductor-ferromagnetic nanoabsorber and traps. Sci. Rep. 2020, 10, 21961. [Google Scholar] [CrossRef]
- Martinis, J.M.; Cooper, K.B.; McDermott, R.; Steffen, M.; Ansmann, M.; Osborn, K.D.; Cicak, K.; Oh, S.; Pappas, D.P.; Simmonds, R.W.; et al. Decoherence in Josephson Qubits from Dielectric Loss. Phys. Rev. Lett. 2005, 95, 210503. [Google Scholar] [CrossRef] [Green Version]
- Caruso, R.; Massarotti, D.; Campagnano, G.; Pal, A.; Ahmad, H.G.; Lucignano, P.; Eschrig, M.; Blamire, M.G.; Tafuri, F. Tuning of Magnetic Activity in Spin-Filter Josephson Junctions Towards Spin-Triplet Transport. Phys. Rev. Lett. 2019, 122, 047002. [Google Scholar] [CrossRef] [Green Version]
- Caruso, R.; Massarotti, D.; Miano, A.; Bolginov, V.V.; Hamida, A.B.; Karelina, L.N.; Campagnano, G.; Vernik, I.V.; Tafuri, F.; Ryazanov, V.V.; et al. Properties of Ferromagnetic Josephson Junctions for Memory Applications. IEEE Trans. Appl. Supercond. 2018, 28, 1558–2515. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Caruso, R.; Pal, A.; Rotoli, G.; Pepe, G.; Blamire, M.; Tafuri, F.; Massarotti, D. Electrodynamics of highly spin-polarized tunnel Josephson junctions. Phys. Rev. Appl. 2020, 13, 014017. [Google Scholar] [CrossRef] [Green Version]
- Barone, A.; Paterno, G. Physics and Application of the Josephson Effect; John Wiley and Sons: Hoboken, NJ, USA, 1982. [Google Scholar]
- Likharev, K.K. Dynamics of Josephson Junctions and Circuits; Gordon & Breach: New York, NY, USA, 1986. [Google Scholar]
- Cristiano, R.; Frunzio, L.; Monaco, R.; Nappi, C.; Pagano, S. Investigation of subgap structures in high-quality Nb/AlOx/Nb tunnel junctions. Phys. Rev. B 1994, 49, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.N.; Burstein, E. Excess Currents in Electron Tunneling Between Superconductors. Phys. Rev. Lett. 1963, 10, 14–17. [Google Scholar] [CrossRef]
- Schrieffer, J.R.; Wilkins, J.W. Two-Particle Tunneling Processes Between Superconductors. Phys. Rev. Lett. 1963, 10, 17–20. [Google Scholar] [CrossRef]
- Ambegaokar, V.; Baratoff, A. Tunneling Between Superconductors. Phys. Rev. Lett. 1963, 10, 486–489. [Google Scholar] [CrossRef]
- Kulik, I.P. Magnitude of the critical Josephson tunnel current. Sov. J. Exp. Theor. Phys. 1965, 22, 841. [Google Scholar]
- Sulangi, M.A.; Weingartner, T.A.; Pokhrel, N.; Patrick, E.; Law, M.; Hirschfeld, P.J. Disorder and critical current variability in Josephson junctions. J. Appl. Phys. 2020, 127, 033901. [Google Scholar] [CrossRef] [Green Version]
- Mamin, H.; Huang, E.; Carnevale, S.; Rettner, C.; Arellano, N.; Sherwood, M.; Kurter, C.; Trimm, B.; Sandberg, M.; Shelby, R.; et al. Merged-Element Transmons: Design and Qubit Performance. Phys. Rev. Appl. 2021, 16, 024023. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; Wiley-IEEE Press: New York, NY, USA, 2008. [Google Scholar]
- Gubankov, V.N.; Lisitskii, M.P.; Serpuchenko, I.L.; Sklokin, F.N.; Fistul, M.V. Influence of trapped abrikosov vortices. Supercond. Sci. Technol. 1992, 5, 168–173. [Google Scholar] [CrossRef]
- Khaire, T.S.; Pratt, W.P.; Birge, N.O. Critical current behavior in Josephson junctions with the weak ferromagnet PdNi. Phys. Rev. B 2009, 79, 094523. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.W.A.; Piano, S.; Burnell, G.; Bell, C.; Blamire, M.G. Zero to π transition in superconductor-ferromagnet-superconductor junctions. Phys. Rev. B 2007, 76, 094522. [Google Scholar] [CrossRef]
JJs | D (μm) | Jc (A/cm2) | Rn (kΩ) | IcRn (μV) | RnA (kΩμm2) | 2Δ0 (μV) | Tc (K) | B |
---|---|---|---|---|---|---|---|---|
SIS’FS | 4 | 0.34 ± 0.07 | 1.7 | 75 | 23 | 391 ± 2 | 1.28 ± 0.02 | 0.27 ± 0.04 |
SIS’FS | 10 | 0.43 ±0.09 | 0.2 | 70 | 15 | 404 ± 3 | 1.30 ± 0.03 | 0.22 ± 0.05 |
SIS’S | 4 | 0.34 ± 0.07 | 1.7 | 75 | 21 | 390 ± 2 | 1.30 ± 0.01 | 0.23 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vettoliere, A.; Satariano, R.; Ferraiuolo, R.; Di Palma, L.; Ahmad, H.G.; Ausanio, G.; Pepe, G.P.; Tafuri, F.; Massarotti, D.; Montemurro, D.; et al. High-Quality Ferromagnetic Josephson Junctions Based on Aluminum Electrodes. Nanomaterials 2022, 12, 4155. https://doi.org/10.3390/nano12234155
Vettoliere A, Satariano R, Ferraiuolo R, Di Palma L, Ahmad HG, Ausanio G, Pepe GP, Tafuri F, Massarotti D, Montemurro D, et al. High-Quality Ferromagnetic Josephson Junctions Based on Aluminum Electrodes. Nanomaterials. 2022; 12(23):4155. https://doi.org/10.3390/nano12234155
Chicago/Turabian StyleVettoliere, Antonio, Roberta Satariano, Raffaella Ferraiuolo, Luigi Di Palma, Halima Giovanna Ahmad, Giovanni Ausanio, Giovanni Piero Pepe, Francesco Tafuri, Davide Massarotti, Domenico Montemurro, and et al. 2022. "High-Quality Ferromagnetic Josephson Junctions Based on Aluminum Electrodes" Nanomaterials 12, no. 23: 4155. https://doi.org/10.3390/nano12234155
APA StyleVettoliere, A., Satariano, R., Ferraiuolo, R., Di Palma, L., Ahmad, H. G., Ausanio, G., Pepe, G. P., Tafuri, F., Massarotti, D., Montemurro, D., Granata, C., & Parlato, L. (2022). High-Quality Ferromagnetic Josephson Junctions Based on Aluminum Electrodes. Nanomaterials, 12(23), 4155. https://doi.org/10.3390/nano12234155