Evaluation of Cytotoxicity and Bioimaging of Nitrogen-Vacancy Nanodiamonds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterisation Methods
2.3. Cell Culture
2.4. In Vitro Cell Studies
3. Results
3.1. Characterisation of NV NDs
3.2. In Vitro Evaluation of NV NDs as Fluorescent Probes
3.2.1. Cytotoxicity
3.2.2. Assessing Cellular Uptake with Flow Cytometry
3.2.3. Visualising Cellular Uptake with Confocal Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danilenko, V.V. On the history of the discovery of nanodiamond synthesis. Phys. Solid State 2004, 46, 595–599. [Google Scholar] [CrossRef]
- Kaur, R.; Badea, I. Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems. Int. J. Nanomed. 2013, 8, 203–220. [Google Scholar]
- Xing, Y.; Dai, L. Nanodiamonds for nanomedicine. Nanomedicine 2009, 4, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, J.; Li, W.; Zhang, Y.; Yang, X.; Chen, N.; Sun, Y.; Zhao, Y.; Fan, C.; Huang, Q. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2012, 2, 302–312. [Google Scholar] [CrossRef]
- Chipaux, M.; van der Loan, K.J.; Hemelaar, S.R.; Hasani, M.; Zheng, T.; Schirhagl, R. Nanodiamonds and their applications in cells. Small 2018, 14, 1704263. [Google Scholar] [CrossRef]
- Gracio, J.J.; Fan, Q.H.; Madaleno, J.C. Diamond growth by chemical vapour deposition. J. Phys. D Appl. Phys. 2010, 43, 374017. [Google Scholar] [CrossRef] [Green Version]
- Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y.D. Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater. 2011, 2011, 685081. [Google Scholar]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nature Nanotechnol. 2011, 7, 11–23. [Google Scholar] [CrossRef]
- Boudou, J.-P.; Curmi, P.A.; Jelezko, F.; Wrachtrup, J.; Aubert, P.; Sennour, M.; Balasubramanian, G.; Reuter, R.; Thorel, A.; Gaffet, E. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 2009, 20, 235602. [Google Scholar] [CrossRef]
- Davydov, V.A.; Rakhmanina, A.V.; Agafonov, V.; Khabashesku, V.N. On the nature of simultaneous formation of nano- and micron-size diamond fractions under pressure–temperature-induced transformations of binary mixtures of hydrocarbon and fluorocarbon compounds. Carbon 2015, 90, 231–233. [Google Scholar] [CrossRef]
- Davydov, V.A.; Agafonov, V.; Khabashesku, V.N. Comparative study of condensation routes for formation of nano- and microsized carbon forms in hydrocarbon, fluorocarbon, and fluoro-hydrocarbon systems at high pressures and temperatures. J. Phys. Chem. C 2016, 120, 29498–29509. [Google Scholar] [CrossRef]
- Klotz, M.; Fehler, K.G.; Waltrich, R.; Steiger, E.S.; Häußler, S.; Reddy, P.; Kulikova, L.F.; Davydov, V.A.; Agafonov, V.N.; Doherty, M.W.; et al. Prolonged orbital relaxation by locally modified phonon density of states for the SiV− center in nanodiamonds. Phys. Rev. Lett. 2022, 128, 153602. [Google Scholar] [CrossRef]
- Liu, W.; Alam, M.N.A.; Liu, Y.; Agafonov, V.N.; Qi, H.; Koynov, K.; Davydov, V.A.; Uzbekov, R.; Kaiser, U.; Lasser, T.; et al. Silicon-vacancy nanodiamonds as high performance near-infrared emitters for live-cell dual-color imaging and thermometry. Nano Lett. 2022, 22, 2881–2888. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-R.; Lee, H.-Y.; Chen, K.; Chang, C.-C.; Tsai, D.-S.; Fu, C.-C.; Lim, T.-S.; Tzeng, Y.-K.; Fang, C.-Y.; Han, C.-C.; et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 2008, 3, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Barnard, A.S. Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 2009, 134, 1751–1764. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, I.I.; Shenderova, O.; Turner, S.; Lebedev, O.I.; Basov, A.A.; Sildos, I.; Rähn, M.; Shiryaev, A.A.; Van Tendeloo, G. Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 2010, 6, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.L.Y.; Barnard, A.S.; Dwyer, C.; Boothroyd, C.B.; Hocking, R.K.; Ōsawa, E.; Nicholls, R.J. Counting vacancies and nitrogen-vacancy centers in detonation nanodiamond. Nanoscale 2016, 8, 10548–10552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laube, C.; Oeckinghaus, T.; Lehnert, J.; Griebel, J.; Knolle, W.; Denisenko, A.; Kahnt, A.; Meijer, J.; Wrachtrup, J.; Abel, B. Controlling the fluorescence properties of nitrogen vacancy centers in nanodiamonds. Nanoscale 2019, 11, 1770–1783. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005, 127, 17604–17605. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.-C.; Lee, H.-Y.; Chen, K.; Lim, T.-S.; Wu, H.-Y.; Lin, P.-K.; Wei, P.-K.; Tsao, P.-H.; Chang, H.-C.; Fann, W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA 2007, 104, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Vaijayanthimala, V.; Cheng, P.Y.; Yeh, S.H.; Liu, K.K.; Hsiao, C.H.; Chao, J.I.; Chang, H.C. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 2012, 33, 7794–7802. [Google Scholar] [CrossRef]
- Kvakova, K.; Ondra, M.; Schimer, J.; Petrik, M.; Novy, Z.; Raabova, H.; Hajduch, M.; Cigler, P. Visualization of sentinel lymph nodes with mannosylated fluorescent nanodiamonds. Adv. Funct. Mater. 2022, 32, 2109960. [Google Scholar] [CrossRef]
- Faklaris, O.; Joshi, V.; Irinopoulou, T.; Tauc, P.; Sennour, M.; Girard, H.; Gesset, C.; Arnault, J.-C.; Thorel, A.; Boudou, J.-P.; et al. Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells. ACS Nano 2009, 3, 3955–3962. [Google Scholar] [CrossRef] [Green Version]
- Reineck, P.; Abraham, A.N.; Poddar, A.; Shukla, R.; Abe, H.; Ohshima, T.; Gibson, B.C.; Dekiwadia, C.; Conesa, J.J.; Pereiro, E.; et al. Multimodal imaging and soft x-ray tomography of fluorescent nanodiamonds in cancer cells. Biotechnol. J. 2021, 16, 2000289. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fryer, C.; Sharkey, J.; Thomas, A.; Wais, U.; Jackson, A.W.; Wilm, B.; Murray, P.; Zhang, H. Perylene diimide nanoprobes for in vivo tracking of mesenchymal stromal cells using photoacoustic imaging. ACS Appl. Mater. Interfaces 2020, 12, 27930–27939. [Google Scholar] [CrossRef]
- Amadeo, F.; Cepeda, K.T.; Littlewood, J.; Wilm, B.; Taylor, A.; Murray, P. Mesenchymal stromal cells: What have we learned so far about their therapeutic potential and mechanisms of action? Emerg. Top. Life Sci. 2021, 5, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; Sharkey, J.; Plagge, A.; Wilm, B.; Murray, P. Multicolour in vivo bioluminescence imaging using a nanoluc-based bret reporter in combination with firefly luciferas. Contrast Media Mol. Imaging 2018, 2018, 2514796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suresh, R.; Murugesan, S.; Khabashesku, V. Click reaction functionalization of hydroxylated nanoparticles by cyclic azasilanes for colloidal stability in oilfield applications. Adv. Nanoparticles 2021, 10, 36–49. [Google Scholar] [CrossRef]
- Hsiao, W.W.-W.; Hui, Y.Y.; Tsai, P.-C.; Chang, H.-C. Fluorescent nanodiamond: A versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res. 2016, 49, 400–407. [Google Scholar] [CrossRef]
- Woodhams, B.; Ansel-Bollepalli, L.; Surmacki, J.; Knowles, H.; Maggini, L.; de Volder, M.; Atatüre, M.; Bohndiek, S. Graphitic and oxidised high pressure high temperature (HPHT) nanodiamonds induce differential biological responses in breast cancer cell lines. Nanoscale 2018, 10, 12169–12179. [Google Scholar] [CrossRef] [Green Version]
- The Element Six CVD Diamond Handbook. Available online: https://e6cvd.com/media/wysiwyg/pdf/E6_CVD_Diamond_Handbook.pdf (accessed on 21 October 2022).
- Huang, L.-C.L.; Chang, H.-C. Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 2004, 20, 5879–5884. [Google Scholar] [CrossRef] [PubMed]
- Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L. Nanodiamond internalization in cells and the cell uptake mechanism. J. Nanoparticle Res. 2013, 15, 1834. [Google Scholar] [CrossRef]
- Su, L.-J.; Wu, M.-S.; Hui, Y.Y.; Chang, B.-M.; Pan, L.; Hsu, P.-C.; Chen, Y.-T.; Ho, H.-N.; Huang, Y.-H.; Ling, T.-Y.; et al. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Sci. Rep. 2017, 7, 45607. [Google Scholar] [CrossRef]
ND Sample | Expected Particle Size (nm) | Intensity Particle Size Distribution (nm) | Polydispersity Index | Zeta Potential (mV) |
---|---|---|---|---|
NV-40 | 40 | 49 ± 17 | 0.11 | −46 ± 1 |
NV-90 | 90 | 93 ± 46 | 0.13 | −35 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fryer, C.; Murray, P.; Zhang, H. Evaluation of Cytotoxicity and Bioimaging of Nitrogen-Vacancy Nanodiamonds. Nanomaterials 2022, 12, 4196. https://doi.org/10.3390/nano12234196
Fryer C, Murray P, Zhang H. Evaluation of Cytotoxicity and Bioimaging of Nitrogen-Vacancy Nanodiamonds. Nanomaterials. 2022; 12(23):4196. https://doi.org/10.3390/nano12234196
Chicago/Turabian StyleFryer, Claudia, Patricia Murray, and Haifei Zhang. 2022. "Evaluation of Cytotoxicity and Bioimaging of Nitrogen-Vacancy Nanodiamonds" Nanomaterials 12, no. 23: 4196. https://doi.org/10.3390/nano12234196
APA StyleFryer, C., Murray, P., & Zhang, H. (2022). Evaluation of Cytotoxicity and Bioimaging of Nitrogen-Vacancy Nanodiamonds. Nanomaterials, 12(23), 4196. https://doi.org/10.3390/nano12234196