Memristors with Nociceptor Characteristics Using Threshold Switching of Pt/HfO2/TaOx/TaN Devices
Abstract
:1. Introduction
2. Experiments
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chua, L.O. Memristor—The Missing Circuit Element. IEEE Trans. Circuit Theory 2020, 18, 507–519. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Staikov, C.; Szot, K. Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef]
- Hwang, C.S. Prospective of Semiconductor Memory Devices: From Memory System to Materials. Adv. Electron. Mater. 2015, 1, 1400056. [Google Scholar] [CrossRef]
- Kim, K.M.; Jeong, D.S.; Hwang, C.S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 2011, 22, 254002. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.L.; Loy, D.J.J.; Dananjaya, P.A.; Tan, F.; Ng, C.M.; Lew, W.S. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 2018, 53, 8720–8746. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.; Choo, M.; Noh, J.; Sheri, A.; Jung, S.; Seo, K.; Park, J.; Kim, S.; Lee, W.; et al. RRAM-based synapse for neuromorphic system with pattern recognition function. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 10.2.1–10.2.4. [Google Scholar]
- Wu, H.; Yao, P.; Gao, B.; Wu, W.; Zhang, Q.; Zhang, W.; Deng, N.; Wu, D.; Wong, H.S.P.; Yu, S.; et al. Negative-Capacitance FinFET Inverter, Ring Oscillator, SRAM Cell, and FtIn Technical Digest—International Electron Devices Meeting. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 11.5.1–11.5.4. [Google Scholar]
- Wang, Z.; Joshi, S.; Savel’Ev, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Asapu, S.; Zhuo, Y.; et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Park, J.; Kim, S.J. Compatible resistive switching mechanisms in Ni/SiOx/ITO and application to neuromorphic systems. Alloys Compd. 2022, 903, 163870. [Google Scholar] [CrossRef]
- Park, J.; Ryu, H.; Kim, S. Nonideal resistive and synaptic characteristics in Ag/ZnO/TiN device for neuromorphic system. Sci. Rep. 2021, 11, 16601. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cho, H.; Ryu, H.; Ismail, M.; Mahata, C.; Kim, S. Tunable synaptic characteristics of a Ti/TiO2/Si memory device for reservoir computing. ACS Appl. Mater. Interfaces 2021, 13, 33244–33252. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Xu, H.Y.; Li, X.H.; Yu, H.; Liu, Y.C.; Zhu, X.J. Memristors: Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor. Adv. Funct. Mater. 2012, 22, 2758. [Google Scholar] [CrossRef]
- Yoon, J.H.; Wang, Z.; Kim, K.M.; Wu, H.; Ravichandran, V.; Xia, Q.; Hwang, C.S.; Yang, J.J. An artificial nociceptor based on a diffusive memristor. Nat. Commun. 2018, 9, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.Y.; di Huang, X.; Yuan, J.H.; Lu, Y.F.; Wan, T.Q.; Li, Y.; Xue, K.H.; He, Y.H.; Xu, M.; Tong, H.; et al. Controlled Memory and Threshold Switching Behaviors in a Heterogeneous Memristor for Neuromorphic Computing. Adv. Electron. Mater. 2020, 6, 2000309. [Google Scholar] [CrossRef]
- Lu, Y.F.; Li, Y.; Li, H.; Wan, T.Q.; Huang, X.; He, Y.H.; Miao, X. Low-power artificial neurons based on Ag/TiN/HfAlOx/Pt threshold switching memristor for neuromorphic computing. IEEE Electron Device Lett. 2020, 41, 1245–1248. [Google Scholar] [CrossRef]
- Kim, D.; Jeon, B.; Lee, Y.; Kim, D.; Cho, Y.; Kim, S. Prospects and applications of volatile memristors. Appl. Phys. Lett. 2022, 121, 010501. [Google Scholar] [CrossRef]
- John, R.A.; Tiwari, N.; Patdillah, M.I.B.; Kulkarni, M.R.; Tiwari, N.; Basu, J.; Bose, S.K.; Ankit; Yu, C.J.; Nirmal, A.; et al. Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Anderson, A. Understanding Human-Space Suit Interaction to Prevent Injury During Extravehicular Activity. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2014. [Google Scholar]
- Park, H.L.; Lee, Y.; Kim, N.; Seo, D.G.; Go, G.T.; Lee, T.W. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Adv. Mater. 2020, 32, 1903558. [Google Scholar] [CrossRef] [PubMed]
- Stirling, L.; Arezes, P.; Anderson, A. Implications of Space Suit Injury Risk for Developing Computational Performance Models. Aerosp. Med. Hum. Perform. 2019, 90, 553–565. [Google Scholar] [CrossRef]
- Espinoza, S.C. Alteraciones conductuales por deprivación Visuo-kinestésica en ratas. Rev. Psicol. 1993, 4, 53–54. [Google Scholar] [CrossRef] [Green Version]
- Woolf, C.J.; Ma, Q. Nociceptors—Noxious stimulus detectors. Neuron 2007, 55, 353–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubin, A.E.; Patapoutian, A.J. Nociceptors: The sensors of the pain pathway. Clin. Invest. 2010, 120, 3760–3772. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kwon, Y.J.; Kwon, D.E.; Yoon, K.J.; Yoon, J.H.; Yoo, S.; Kim, H.J.; Park, T.H.; Han, J.W.; Kim, K.M.; et al. Nociceptive memristor. Adv. Mater. 2018, 30, 1704320. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, J.; Cao, G.; Zheng, S.; Yan, X. A Memristor-Based Silicon Carbide for Artificial Nociceptor and Neuromorphic Computing. Adv. Mater. Technol. 2021, 6, 2100373. [Google Scholar] [CrossRef]
- John, R.A.; Yantara, N.; Ng, S.E.; Patdillah, M.I.B.; Kulkarni, M.R.; Jamaludin, N.F.; Basu, J.; Ankit, S.; Mhaisalkar, G.; Basu, A.; et al. Diffusive and drift halide perovskite memristive barristors as nociceptive and synaptic emulators for neuromorphic computing. Adv. Mater. 2021, 33, 2007851. [Google Scholar] [CrossRef]
- Kumar, M.; Kim, H.S.; Kim, J. A Highly Transparent Artificial Photonic Nociceptor. Adv. Mater. 2018, 10, 34370–34376. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Kim, S. Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification. Chaos Solitons Fractals 2021, 150, 111223. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S. Self-Rectifying Resistive Switching and Short-Term Memory Characteristics in Pt/HfO2/TaO x/TiN Artificial Synaptic Device. Nanomaterials 2020, 10, 2159. [Google Scholar] [CrossRef] [PubMed]
- Mendell, L.M. Computational functions of neurons and circuits signaling injury: Relationship to pain behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 15596–15601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Kong, J.Z.; Cao, Z.Y.; Li, A.D.; Wang, L.G.; Wang, L.; Zhu, X.; Li, Y.; Cao, Q.; Wu, D. Bipolar resistive switching characteristics of HfO2/TiO2/HfO2 trilayer-structure RRAM devices on Pt and TiN-coated substrates fabricated by atomic layer deposition. Nanoscale Res. Lett. 2017, 12, 393. [Google Scholar] [CrossRef] [Green Version]
- Yun, M.J.; Lee, D.; Kim, S.; Wenger, C.; Kim, H.D. A nonlinear resistive switching behaviors of Ni/HfO2/TiN memory structures for self-rectifying resistive switching memory. Mater. Charact. 2021, 182, 111578. [Google Scholar] [CrossRef]
- Yong, Z.; Persson, K.-M.; Ram, M.S.; D’Acunto, G.; Liu, Y.; Benter, S.; Pan, J.; Li, Z.; Borg, M.; Mikkelsen, A.; et al. Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO2 RRAM via TiN bottom electrode and interface engineering. Appl. Surf. Sci. 2021, 551, 149386. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Jeon, B.; Park, J.; Kim, S. Memristors with Nociceptor Characteristics Using Threshold Switching of Pt/HfO2/TaOx/TaN Devices. Nanomaterials 2022, 12, 4206. https://doi.org/10.3390/nano12234206
Park M, Jeon B, Park J, Kim S. Memristors with Nociceptor Characteristics Using Threshold Switching of Pt/HfO2/TaOx/TaN Devices. Nanomaterials. 2022; 12(23):4206. https://doi.org/10.3390/nano12234206
Chicago/Turabian StylePark, Minsu, Beomki Jeon, Jongmin Park, and Sungjun Kim. 2022. "Memristors with Nociceptor Characteristics Using Threshold Switching of Pt/HfO2/TaOx/TaN Devices" Nanomaterials 12, no. 23: 4206. https://doi.org/10.3390/nano12234206
APA StylePark, M., Jeon, B., Park, J., & Kim, S. (2022). Memristors with Nociceptor Characteristics Using Threshold Switching of Pt/HfO2/TaOx/TaN Devices. Nanomaterials, 12(23), 4206. https://doi.org/10.3390/nano12234206