Submicron-Size Emitters of the 1.2–1.55 μm Spectral Range Based on InP/InAsP/InP Nanostructures Integrated into Si Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elshaari, A.W.; Pernice, W.; Srinivasan, K.; Benson, O.; Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photonics 2020, 14, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Chen, S.; Park, J.-S.; Seeds, A.; Liu, H. III–V quantum-dot lasers monolithically grown on silicon. Semicond. Sci. Technol. 2018, 33, 123002. [Google Scholar] [CrossRef]
- Yu, Y.; Xue, W.; Semenova, E.; Yvind, K.; Mork, J. Demonstration of a self-pulsing photonic crystal Fano laser. Nat. Photonics 2017, 11, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631–641. [Google Scholar] [CrossRef]
- Park, G.C.; Xue, W.; Piels, M.; Zibar, D.; Mørk, J.; Semenova, E.; Chung, I.-S. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics. Sci. Rep. 2016, 6, 38801. [Google Scholar] [CrossRef] [Green Version]
- Waldron, N.; Merckling, C.; Teugels, L.; Ong, P.; Ibrahim, S.A.U.; Sebaai, F.; Pourghaderi, A.; Barla, K.; Collaert, N.; Thean, A.V.-Y. InGaAs Gate-All-Around Nanowire Devices on 300mm Si Substrates. IEEE Electron. Device Lett. 2014, 35, 1097–1099. [Google Scholar] [CrossRef]
- Borg, M.; Schmid, H.; Moselund, K.E.; Signorello, G.; Gignac, L.; Bruley, J.; Breslin, C.; Das Kanungo, P.; Werner, P.; Riel, H. Vertical III–V Nanowire Device Integration on Si(100). Nano Lett. 2014, 14, 1914–1920. [Google Scholar] [CrossRef]
- Kunert, B.; Mols, Y.; Baryshniskova, M.; Waldron, N.; Schulze, A.; Langer, R. How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches. Semicond. Sci. Technol. 2018, 33, 093002. [Google Scholar] [CrossRef]
- Wan, Y.; Norman, J.C.; Tong, Y.; Kennedy, M.J.; He, W.; Selvidge, J.; Shang, C.; Dumont, M.; Malik, A.; Tsang, H.K.; et al. 1.3 μm Quantum Dot-Distributed Feedback Lasers Directly Grown on (001) Si Laser. Photon. Rev. 2020, 14, 2000037. [Google Scholar]
- Wan, Y.; Zhang, S.; Norman, J.C.; Kennedy, M.J.; He, W.; Liu, S.; Xiang, C.; Shang, C.; He, J.-J.; Gossard, A.C.; et al. Quantum dot lasers grown directly on silicon. Optica 2019, 6, 1394. [Google Scholar] [CrossRef]
- Luxmoore, I.J.; Toro, R.; Zamudio, O.D.P.; Wasley, N.A.; Chekhovich, E.A.; Sanchez, A.; Beanland, R.; Fox, A.M.; Skolnick, M.; Liu, H.Y.; et al. III-V quantum light source and cavity-QED on silicon. Sci. Rep. 2013, 3, 1239. [Google Scholar] [CrossRef] [PubMed]
- Daix, N.; Uccelli, E.; Czornomaz, L.; Caimi, D.; Rossel, C.; Sousa, M.; Siegwart, H.; Marchiori, C.; Hartmann, J.M.; Shiu, K.-T.; et al. Towards large size substrates for III-V co-integration made by direct wafer bonding on Si. APL Mater. 2014, 2, 086104. [Google Scholar] [CrossRef] [Green Version]
- Widiez, J.; Sollier, S.; Baron, T.; Martin, M.; Gaudin, G.; Mazen, F.; Madeira, F.; Favier, S.; Salaun, A.; Alcotte, R.; et al. 300 mm InGaAs-on-insulator substrates fabricated using direct wafer bonding and the Smart Cut(TM) technology. Jpn. J. Appl. Phys. 2016, 55, 04EB10. [Google Scholar] [CrossRef]
- Sahoo, H.K.; Ottaviano, L.; Zheng, Y.; Hansen, O.; Yvind, K. Low temperature bonding of heterogeneous materials using Al2O3 as an intermediate layer. J. Vac. Sci. Technol. B 2018, 36, 011202. [Google Scholar] [CrossRef] [Green Version]
- Sakanas, A.; Semenova, E.; Ottaviano, L.; Mørk, J.; Yvind, K. Comparison of processing-induced deformations of InP bonded to Si determined by e-beam metrology: Direct vs. adhesive bonding. Microelectron. Eng. 2019, 214, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Mauthe, S.; Vico Trivino, N.; Baumgartner, Y.; Sousa, M.; Caimi, D.; Stoferle, T.; Schmid, H.; Moselund, K.E. InP-on-Si Optically Pumped Microdisk Lasers via Monolithic Growth and Wafer Bonding. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Merckling, C.; Waldron, N.; Jiang, S.; Guo, W.; Barla, K.; Heyns, M.; Collaert, N.; Thean, A.; Vandervorst, W. Selective-Area Metal Organic Vapor-Phase Epitaxy of III-V on Si: What About Defect Density? ECS Trans. 2014, 64, 513–521. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, B.; Pantouvaki, M.; Guo, W.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D. Roomtemperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics 2015, 9, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.; Capellini, G.; Hatami, F.; Di Bartolomeo, A.; Niermann, T.; Hussein, E.H.; Schubert, M.A.; Krause, H.-M.; Zaumseil, P.; Skibitzki, O.; et al. Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure. ACS Appl. Mater. Interfaces 2016, 8, 26948–26955. [Google Scholar] [CrossRef]
- Iemmo, L.; Di Bartolomeo, A.; Giubileo, F.; Luongo, G.; Passacantando, M.; Niu, G.; Hatami, F.; Skibitzki, O.; Schroeder, T. Graphene enhanced field emission from InP nanocrystals. Nanotechnology 2017, 28, 495705. [Google Scholar] [CrossRef] [Green Version]
- Vukajlovic-Plestina, J.; Kim, W.; Ghisalberti, L.; Varnavides, G.; Tütüncuoglu, G.; Potts, H.; Friedl, M.; Güniat, L.; Carter, W.C.; Dubrovskii, V.G.; et al. Fundamental aspects to localize self-catalyzed III-V nanowires on silicon. Nat. Commun. 2019, 10, 869. [Google Scholar] [CrossRef] [PubMed]
- Bollani, M.; Bietti, S.; Frigeri, C.; Chrastina, D.; Reyes, K.; Smereka, P.; Millunchick, J.M.; Vanacore, G.M.; Burghammer, M.; Tagliaferri, A.; et al. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates. Nanotechnology 2014, 25, 205301. [Google Scholar] [CrossRef] [PubMed]
- Oehler, F.; Cattoni, A.; Scaccabarozzi, A.; Patriarche, G.; Glas, F.; Harmand, J.C. Measuring and Modeling the Growth Dynamics of Self-Catalyzed GaP Nanowire Arrays. Nano Lett. 2018, 18, 701–708. [Google Scholar] [CrossRef]
- Mayer, B.F.; Wirths, S.; Mauthe, S.; Staudinger, P.; Sousa, M.; Winiger, J.; Schmid, H.; Moselund, K.E. Microcavity Lasers on Silicon by Template-Assisted Selective Epitaxy of Microsubstrates. IEEE Photonics Technol. Lett. 2019, 31, 1021–1024. [Google Scholar] [CrossRef]
- Herranz, J.; Corfdir, P.; Luna, E.; Jahn, U.; Lewis, R.B.; Schrottke, L.; Lähnemann, J.; Tahraoui, A.; Trampert, A.; Brandt, O.; et al. Coaxial GaAs/(In,Ga)As Dot-in-a-Well Nanowire Heterostructures for Electrically Driven Infrared Light Generation on Si in the Telecommunication O Band. ACS Appl. Nano Mater. 2020, 3, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Kunert, B.; Guo, W.; Mols, Y.; Tian, B.; Wang, Z.; Shi, Y.; Van Thourhout, D.; Pantouvaki, M.; Van Campenhout, J.; Langer, R.; et al. III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate. Appl. Phys. Lett. 2016, 109, 091101. [Google Scholar] [CrossRef]
- Güniat, L.; Caroff, P.; Fontcuberta i Morral, A. Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions. Chem. Rev. 2019, 119, 8958–8971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, X.; Pan, D.; Zhou, Y.; Zhang, X.; Peng, K.; Zhao, B.; Deng, M.; He, J.; Tan, H.H.; Jagadish, C. Selective area epitaxy of III–V nanostructure arrays and networks: Growth, applications, and future directions. Appl. Phys. Rev. 2021, 8, 021302. [Google Scholar] [CrossRef]
- Chang, T.-Y.; Kim, H.; Hubbard, W.A.; Azizur-Rahman, K.M.; Ju, J.J.; Kim, J.-H.; Lee, W.-J.; Huffaker, D. InAsP Quantum Dot-Embedded InP Nanowires toward Silicon Photonic Applications. ACS Appl. Mater. Interfaces 2022, 14, 12488–12494. [Google Scholar] [CrossRef]
- Viazmitinov, D.V.; Berdnikov, Y.; Kadkhodazadeh, S.; Dragunova, A.; Sibirev, N.; Kryzhanovskaya, N.; Radko, I.; Huck, A.; Yvind, K.; Semenova, E. Monolithic integration of InP on Si by molten alloy driven selective area epitaxial growth. Nanoscale 2020, 12, 23780–23788. [Google Scholar] [CrossRef]
- Saenz, T.E.; McMahon, W.E.; Norman, A.G.; Perkins, C.L.; Zimmerman, J.D.; Warren, E.L. High-Temperature Nucleation of GaP on V-Grooved Si. Cryst. Growth Des. 2020, 20, 6745–6751. [Google Scholar] [CrossRef]
- Dargys, A.; Kundrotas, J. Handbook on Physical Properties of Ge, Si, GaAs and InP; Science and Encyclopedia Publishers: Vilnius, Lithuania, 1994. [Google Scholar]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, D.V.; Kolosovsky, D.A.; Fedosenko, E.V.; Toropov, A.I.; Zhuravlev, K.S. Substitution of Phosphorus at the InP(001) Surface Upon Annealing in an Arsenic Flux. Semiconductors 2021, 55, 823–827. [Google Scholar] [CrossRef]
- Akahane, K.; Matsumoto, A.; Umezawa, T.; Yamamoto, N. Fabrication of In(P)As Quantum Dots by Interdiffusion of P and As on InP(311)B Substrate. Crystals 2020, 10, 90. [Google Scholar] [CrossRef]
Sample | Annealing Time under 175 sccm of AsH3 Flux | Number of InAsxP1−x Layers |
---|---|---|
S1 | 180 s | 1 |
S2 | 60 s | 1 |
S3 | 60 s | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnichenko, I.; Moiseev, E.; Kryzhanovskaya, N.; Makhov, I.; Nadtochiy, A.; Kalyuznyy, N.; Kondratev, V.; Zhukov, A. Submicron-Size Emitters of the 1.2–1.55 μm Spectral Range Based on InP/InAsP/InP Nanostructures Integrated into Si Substrate. Nanomaterials 2022, 12, 4213. https://doi.org/10.3390/nano12234213
Melnichenko I, Moiseev E, Kryzhanovskaya N, Makhov I, Nadtochiy A, Kalyuznyy N, Kondratev V, Zhukov A. Submicron-Size Emitters of the 1.2–1.55 μm Spectral Range Based on InP/InAsP/InP Nanostructures Integrated into Si Substrate. Nanomaterials. 2022; 12(23):4213. https://doi.org/10.3390/nano12234213
Chicago/Turabian StyleMelnichenko, Ivan, Eduard Moiseev, Natalia Kryzhanovskaya, Ivan Makhov, Alexey Nadtochiy, Nikolay Kalyuznyy, Valeriy Kondratev, and Alexey Zhukov. 2022. "Submicron-Size Emitters of the 1.2–1.55 μm Spectral Range Based on InP/InAsP/InP Nanostructures Integrated into Si Substrate" Nanomaterials 12, no. 23: 4213. https://doi.org/10.3390/nano12234213
APA StyleMelnichenko, I., Moiseev, E., Kryzhanovskaya, N., Makhov, I., Nadtochiy, A., Kalyuznyy, N., Kondratev, V., & Zhukov, A. (2022). Submicron-Size Emitters of the 1.2–1.55 μm Spectral Range Based on InP/InAsP/InP Nanostructures Integrated into Si Substrate. Nanomaterials, 12(23), 4213. https://doi.org/10.3390/nano12234213