PLA-ZnO/TiO2 Nanocomposite Obtained by Ultrasound-Assisted Melt-Extrusion for Adsorption of Methylene Blue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Modification of ZnO/TiO2
2.3. Composite Preparation by an Ultrasound-Assisted Melt-Extrusion Process
2.4. Characterization Techniques
2.4.1. Fourier Transform Infrared (FTIR)
2.4.2. X-ray Diffraction
2.4.3. Thermogravimetric Analysis (TGA)
2.4.4. Differential Scanning Calorimetry (DSC) (ASTM D3418)
2.4.5. Scanning Electron Microscopy (SEM)
2.4.6. Adsorption of Methylene Blue
2.4.7. Adsorption Isotherm
2.4.8. Desorption Studies
3. Results
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)
3.2. X-ray Diffraction (XRD)
3.3. Thermogravimetric Analysis (TGA)
3.4. Differential Scanning Calorimetry (DSC)
3.5. Scanning Electron Microscopy (SEM)
3.6. Adsorption of Methylene blue
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gryta, M. Water desalination by membrane distillation. In Desalination, Trends and Technologies; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef] [Green Version]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef] [PubMed]
- Sonune, A.; Ghate, R. Developments in wastewater treatment methods. Desalination 2004, 167, 55–63. [Google Scholar] [CrossRef]
- Bagastyo, A.Y.; Keller, J.; Poussade, Y.; Batstone, D.J. Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants. Water Res. 2011, 45, 2415–2427. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Mi, X.; Li, Y.; Zhan, S. 3D graphene-based macrostructures for water treatment. Adv. Mater. 2020, 32, 1806843. [Google Scholar] [CrossRef] [PubMed]
- Heemskerk, S.; Van Haren, F.M.; Foudraine, N.A.; Peters, W.H.; Van Der Hoeven, J.G.; Russel, F.G.; Masereeuw, R.; Pickkers, P. Short-term beneficial effects of methylene blue on kidney damage in septic shock patients. Intensive Care Med. 2008, 34, 350–354. [Google Scholar] [CrossRef] [Green Version]
- Cabello-Alvarado, C.J.; Quiñones-Jurado, Z.V.; Cruz-Delgado, V.J.; Avila-Orta, C.A. Pigmentation and degradative activity of TiO2 on polyethylene films us-ing Masterbatches fabricated using variable-frequency ultrasound-assisted melt-extrusion. Materials 2020, 13, 3855. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Aschauer, U.; Chen, J.; Selloni, A. Adsorption and reactions of O2 on anatase TiO2. Acc. Chem. Res. 2014, 47, 3361–3368. [Google Scholar] [CrossRef]
- Gan, W.; Shang, X.; Li, X.H.; Zhang, J.; Fu, X. Achieving high adsorption capacity and ultrafast removal of methylene blue and Pb2+ by graphene-like TiO2@ C. Colloids Surf. A Physicochem. Eng. Asp. 2019, 561, 218–225. [Google Scholar] [CrossRef]
- Prasad, K.; Jha, A.K. ZnO nanoparticles: Synthesis and adsorption study. Nat. Sci. 2009, 1, 129. [Google Scholar] [CrossRef]
- Chantes, P.; Jarusutthirak, C.; Danwittayakul, S. A Comparison Study of Photocatalytic Activity of TiO2 and ZnO on the Degradation of Real Batik Wastewater. In Proceedings of the International Conference on Biological, Environment and Food Engineering (BE-FE-2015), Singapore, 15–16 May 2015. [Google Scholar]
- Zhang, F.; Lan, J.; Yang, Y.; Wei, T.; Tan, R.; Song, W. Adsorption behavior and mechanism of methyl blue on zinc oxide nanoparticles. J. Nanopart. Res. 2013, 15, 2034. [Google Scholar] [CrossRef]
- Cabello, C.; Rincón, S.; Bartolo, P.; Ruiz-Espinoza, J.; Zepeda, A. Incorporation of organic groups on the surface of multi-walled carbon nanotubes using an ultrasonic tip. Fuller. Nanotub. Carbon Nanostruct. 2018, 26, 502–509. [Google Scholar] [CrossRef]
- Rupa, E.; Kaliraj, L.; Abid, S.; Yang, D.; Jung, S. Synthesis of a Zinc Oxide Nanoflower Photocatalyst from Sea Buckthorn Fruit for Degradation of Industrial Dyes in Wastewater Treatment. Nanomaterials 2019, 9, 1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodoo-Arhin, D.; Asiedu, T.; Agyei-Tuffour, B.; Nyankson, E.; Obada, D.; Mwabora, J.M. Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles. Mater. Today Proc. 2021, 38, 809–815. [Google Scholar] [CrossRef]
- Hu, J.; Wu, D.; Feng, Q.; Wei, A.; Song, B. Soft High-Loading TiO2 Composite Biomaterial Film as an Efficient and Recyclable Catalyst for Removing Methylene Blue. Fibers Polym. 2020, 21, 1760–1766. [Google Scholar] [CrossRef]
- Rajagopal, S.; Paramasivam, B.; Muniyasamy, K. Photocatalytic removal of cationic and anionic dyes in the textile wastewater by H2O2 assisted TiO2 and micro-cellulose composites. Sep. Purif. Technol. 2020, 252, 117444. [Google Scholar] [CrossRef]
- Xu, Q.; Ju, Y.; Ge, H. Kinetics of TiO2/Polyurethane Films for Degradation of Organic Pollutants in Water. Adv. Mater. Res. 2012, 610–613, 1560–1564. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Z.; Liu, Y.; Li, R.; Xu, Y.; Jakaj, G.; Lin, H. Polymeric Membranes Incorporated with ZnO Nanoparticles for Membrane Fouling Mitigation: A Brief Review. Front. Chem. 2020, 8, 224. [Google Scholar] [CrossRef]
- Vatanpour, V.; Nekouhi, G.; Esmaeili, M. Preparation, characterization and performance evaluation of ZnO deposited polyethylene ultrafiltration membranes for dye and protein separation. J. Taiwan Inst. Chem. Eng. 2020, 114, 153–167. [Google Scholar] [CrossRef]
- Dugan, J.S. Novel properties of PLA fibers. Int. Nonwovens J. 2001, 3, 1558925001OS-01000308. [Google Scholar] [CrossRef]
- Mittal, V. (Ed.) Nanocomposites with Biodegradable Polymers: Synthesis, Properties, and Future Perspectives; Oxford University Press: Oxford, UK, 2011; Volume 68. [Google Scholar] [CrossRef]
- Andrade-Guel, M.; Cabello-Alvarado, C.; Bartolo-Pérez, P.; Medellin-Banda, D.I.; Ávila-Orta, C.A.; Cruz-Ortiz, B.; Pliego, G.C. Surface modification of TiO2/ZnO nanoparticles by organic acids with enhanced methylene blue and rhodamine B dye adsorption properties. RSC Adv. 2022, 12, 28494–28504. [Google Scholar] [CrossRef]
- Cuiffo, M.A.; Snyder, J.; Elliott, A.M.; Romero, N.; Kannan, S.; Halada, G.P. Impact of the fused deposition (FDM) printing process on polylactic acid (PLA) chemistry and structure. Appl. Sci. 2017, 7, 579. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Huang, Z.; Wei, M.Y.; Lu, T.; Nong, D.D.; Zhao, J.X.; Teng, L.J. Catalytic effect of nanosized ZnO and TiO2 on thermal degradation of poly (lactic acid) and isoconversional kinetic analysis. Thermochim. Acta 2019, 672, 14–24. [Google Scholar] [CrossRef]
- Kim, I.; Viswanathan, K.; Kasi, G.; Sadeghi, K.; Thanakkasaranee, S.; Seo, J. Poly (lactic acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials. Polymers 2019, 11, 1427. [Google Scholar] [CrossRef] [Green Version]
- Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 2013, 49, 3471–3482. [Google Scholar] [CrossRef]
- Deghiche, A.; Haddaoui, N.; Zerriouh, A.; Fenni, S.E.; Cavallo, D.; Erto, A.; Benguerba, Y. Effect of the stearic acid-modified TiO2 on PLA nanocomposites: Morphological and thermal properties at the microscopic scale. J. Environ. Chem. Eng. 2021, 9, 106541. [Google Scholar] [CrossRef]
- Picard, E.; Espuche, E.; Fulchiron, R. Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl. Clay Sci. 2011, 53, 58–65. [Google Scholar] [CrossRef]
- Črešnar, K.P.; Zemljič, L.F.; Papadopoulos, L.; Terzopoulou, Z.; Zamboulis, A.; Klonos, P.A.; Pissis, P. Effects of Ag, ZnO and TiO2 nanoparticles at low contents on the crystallization, semicrystalline morphology, interfacial phenomena and segmental dynamics of PLA. Mater. Today Commun. 2021, 27, 102192. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Ur Rehman, Z. Review of recent advances in polylactic acid/TiO2 composites. Materials 2019, 12, 3659. [Google Scholar] [CrossRef]
- Andrade-Guel, M.; Cabello-Alvarado, C.; Romero-Huitzil, R.L.; Rodríguez-Fernández, O.S.; Ávila-Orta, C.A.; Cadenas-Pliego, G.; Cepeda-Garza, J. Nanocomposite PLA/C20A Nanoclay by Ultrasound-Assisted Melt Extrusion for Adsorption of Uremic Toxins and Methylene Blue Dye. Nanomaterials 2021, 11, 2477. [Google Scholar] [CrossRef]
- Ortenzi, M.A.; Basilissi, L.; Farina, H.; Di Silvestro, G.; Piergiovanni, L.; Mascheroni, E. Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of l-lactide with silane-modified nanosilica and montmorillonite. Eur. Polym. J. 2015, 66, 478–491. [Google Scholar] [CrossRef]
- Ojijo, V.; Sinha Ray, S.; Sadiku, R. Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly [(butylene succinate)-co-adipate] blend composites. ACS Appl. Mater. Interfaces 2012, 4, 2395–2405. [Google Scholar] [CrossRef] [PubMed]
- Azizi-Lalabadi, M.; Alizadeh-Sani, M.; Divband, B.; Ehsani, A.; McClements, D.J. Nanocomposite films consisting of functional nanoparticles (TiO2 and ZnO) embedded in 4A-Zeolite and mixed polymer matrices (gelatin and polyvinyl alcohol). Food Res. Int. 2020, 137, 109716. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Kimura, Y. Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: Their formation, properties, and application. Polym. Int. 2006, 55, 626–642. [Google Scholar] [CrossRef]
- El-Sayed, M.M.; Elsayed, R.E.; Attia, A.; Farghal, H.H.; Azzam, R.A.; Madkour, T.M. Novel nanoporous membranes of bio-based cellulose acetate, poly (lactic acid) and biodegradable polyurethane in-situ impregnated with catalytic cobalt nanoparticles for the removal of Methylene Blue and Congo Red dyes from wastewater. Carbohydr. Polym. Technol. Appl. 2021, 2, 100123. [Google Scholar] [CrossRef]
- Otero, M.; Rozada, F.; Calvo, L.F.; Garcıa, A.I.; Moran, A. Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dye. Pigment. 2003, 57, 55–65. [Google Scholar] [CrossRef]
- Mohammad, N.; Atassi, Y. TiO2/PLLA electrospun nanofibers membranes for efficient removal of methylene blue using sunlight. J. Polym. Environ. 2021, 29, 509–519. [Google Scholar] [CrossRef]
- Alinezhad, H.; Zabihi, M.; Kahfroushan, D. Design and fabrication the novel polymeric magnetic boehmite nanocomposite (boehmite@Fe3O4@PLA@SiO2) for the remarkable competitive adsorption of methylene blue and mercury ions. J. Phys. Chem. Solids 2020, 144, 109515. [Google Scholar] [CrossRef]
- Ahmad, R.; Mondal, P.K. Adsorption and photodegradation of methylene blue by using PAni/TiO2 nanocomposite. J. Dispers. Sci. Technol. 2012, 33, 380–386. [Google Scholar] [CrossRef]
- Zango, Z.U.; Dennis, J.O.; Aljameel, A.I.; Usman, F.; Ali, M.K.M.; Abdulkadir, B.A.; Ibnaouf, K.H. Effective Removal of Methylene Blue from Simulated Wastewater Using ZnO-Chitosan Nanocomposites: Optimization, Kinetics, and Isotherm Studies. Molecules 2022, 27, 4746. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-lactic acid: Production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. [Google Scholar] [CrossRef]
- Isayev, A.I.; Kumar, R.; Lewis, T.M. Ultrasound assisted twin screw extrusion of polymer–nanocomposites containing carbon nanotubes. Polymer 2009, 50, 250–260. [Google Scholar] [CrossRef]
- Buzarovska, A. PLA nanocomposites with functionalized TiO2 nanoparticles. Polym. Plast. Technol. Eng. 2013, 52, 280–286. [Google Scholar] [CrossRef]
- Mallick, S.; Ahmad, Z.; Touati, F.; Bhadra, J.; Shakoor, R.A.; Al-Thani, N.J. PLA-TiO2 nanocomposites: Thermal, morphological, structural, and humidity sensing properties. Ceram. Int. 2018, 44, 16507–16513. [Google Scholar] [CrossRef]
- Segura González, E.A.; Olmos, D.; Lorente, M.Á.; Vélaz, I.; González-Benito, J. Preparation and characterization of polymer composite materials based on PLA/TiO2 for antibacterial packaging. Polymers 2018, 10, 1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Wu, L.; Wu, L.; Xu, B.I.N.; Zhang, Y.; Zhang, M. Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 1100–1113. [Google Scholar] [CrossRef]
- Ogata, N.; Jimenez, G.; Kawai, H.; Ogihara, T. Structure and thermal/mechanical properties of poly (l-lactide)-clay blend. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 389–396. [Google Scholar] [CrossRef]
- Ávila Orta, C.A.; de Lourdes Hernández-Rodríguez, M.; Lozano Morales, S.A. Río Atoyac: Hacia Una Gestión Integral de una Problemática Multifactorial. Available online: https://agua.org.mx/biblioteca/rio-atoyac-hacia-una-gestion-integral-de-una-problematica-multifactorial/ (accessed on 10 September 2022).
Sample Code | Description |
---|---|
PLA | Pristine PLA |
PZT 0.25% | PLA with 0.25% of ZnO/TiO2 modified with lactic acid |
PZT 0.75% | PLA with 0.75% of ZnO/TiO2 modified with lactic acid |
PZT 1.5% | PLA with 1.5% of ZnO/TiO2 modified with lactic acid |
PZT 2% | PLA with 2% of ZnO/TiO2 modified with lactic acid |
Sample | Temperature at Different Level of Weight Loss | Amount of Residue at 580 °C | |
---|---|---|---|
T10% (°C) | T50% (°C) | (%) | |
PLA | 337 | 362 | 0.00 |
PZT 0.25% | 344 | 368 | 0.21 |
PZT 0.75% | 325 | 354 | 0.5 |
PZT 1.5% | 304 | 333 | 0.7 |
PZT 2% | 300 | 328 | 1.00 |
Sample | Melting Temperature (°C) Tm | Melting Enthalpy (J/g) | Cold Crystallization Temperature (°C) Tcc | Cold Crystallization Entalphy (J/g) (Tcc) |
---|---|---|---|---|
PLA | 176.1 | 58.28 | 98.0 | 30.97 |
PZT 0.25% | 175.4 | 48.73 | 102.0 | 33.25 |
PZT 0.75% | 174.3 | 45.95 | 101.1 | 36.10 |
PZT 1.5% | 175.8 | 47.70 | 101.6 | 34.95 |
PZT 2% | 176.6 | 40.18 | 102.3 | 30.31 |
Sample | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
k | qmax | R2 | n | KF | R2 | |
PLA | 0.02 | 108 | 0.9876 | 3.1 | 9.87 | 0.8234 |
PZT 0.25% | 0.011 | 222 | 0.9995 | 2.2 | 120 | 0.9048 |
PZT 0.75% | 0.010 | 207 | 0.9998 | 5.8 | 308 | 0.9927 |
PZT 1.5% | 0.010 | 203 | 0.9999 | 6.3 | 337 | 0.9986 |
PZT 2% | 0.013 | 206 | 0.9999 | 5.9 | 315 | 0.9979 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Guel, M.; Cabello-Alvarado, C.J.; Cadenas-Pliego, G.; Ávila-Orta, C.A. PLA-ZnO/TiO2 Nanocomposite Obtained by Ultrasound-Assisted Melt-Extrusion for Adsorption of Methylene Blue. Nanomaterials 2022, 12, 4248. https://doi.org/10.3390/nano12234248
Andrade-Guel M, Cabello-Alvarado CJ, Cadenas-Pliego G, Ávila-Orta CA. PLA-ZnO/TiO2 Nanocomposite Obtained by Ultrasound-Assisted Melt-Extrusion for Adsorption of Methylene Blue. Nanomaterials. 2022; 12(23):4248. https://doi.org/10.3390/nano12234248
Chicago/Turabian StyleAndrade-Guel, Marlene, Christian J. Cabello-Alvarado, Gregorio Cadenas-Pliego, and Carlos Alberto Ávila-Orta. 2022. "PLA-ZnO/TiO2 Nanocomposite Obtained by Ultrasound-Assisted Melt-Extrusion for Adsorption of Methylene Blue" Nanomaterials 12, no. 23: 4248. https://doi.org/10.3390/nano12234248
APA StyleAndrade-Guel, M., Cabello-Alvarado, C. J., Cadenas-Pliego, G., & Ávila-Orta, C. A. (2022). PLA-ZnO/TiO2 Nanocomposite Obtained by Ultrasound-Assisted Melt-Extrusion for Adsorption of Methylene Blue. Nanomaterials, 12(23), 4248. https://doi.org/10.3390/nano12234248