Edge States and Strain-Driven Topological Phase Transitions in Quantum Dots in Topological Insulators
Abstract
:1. Introduction
2. Models
2.1. Influence of Strain
2.2. Energy Levels and Wavefunctions of HgTe Nanostructures
2.3. Energy Levels and Wavefunction of HgTe Quantum Disc
2.4. Energy Levels and Wavefunction of HgTe Quantum Square
3. Results and Discussion
3.1. Phase Transitions in the Bulk BHZ Model
3.2. Edge States in the Disc Quantum Dot
3.3. Edge States and Strain-Driven Transitions in the Square Quantum Dot
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volkov, B.A.; Pankratov, O.A. Two-dimensional massless electrons in an inverted contact. Pisma Zh. Eksp. Teor. Fiz. 1985, 42, 145–148. [Google Scholar]
- Bernevig, B.A.; Hughes, T.L.; Zhang, S.C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 2006, 314, 1757–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konig, M.; Wiedmann, S.; Brune, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, X.L.; Zhang, S.C. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science 2007, 318, 766–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brüne, C.; Roth, A.; Buhmann, H.; Hankiewicz, E.M.; Molenkamp, L.W.; Maciejko, J.; Qi, X.L.; Zhang, S.C. Spin polarization of the quantum spin Hall edge states. Nat. Phys. 2012, 8, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef] [Green Version]
- Ando, Y. Topological Insulator Materials. J. Phys. Soc. Jpn. 2013, 82, 102001. [Google Scholar] [CrossRef] [Green Version]
- Bernevig, B.A. Topological Insulators and Topological Superconductors; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Maciejko, J.; Hughes, T.L.; Zhang, S.C. The Quantum Spin Hall Effect. Annu. Rev. Condens. Matter Phys. 2011, 2, 31–53. [Google Scholar] [CrossRef]
- Pertsova, A.; Canali, C.M.; MacDonald, A.H. Quantum Hall edge states in topological insulator nanoribbons. Phys. Rev. B 2016, 94, 121409. [Google Scholar] [CrossRef] [Green Version]
- Schüffelgen, P.; Rosenbach, D.; Li, C.; Schmitt, T.W.; Schleenvoigt, M.; Jalil, A.R.; Schmitt, S.; Kölzer, J.; Wang, M.; Bennemann, B.; et al. Selective area growth and stencil lithography for in situ fabricated quantum devices. Nat. Nanotechnol. 2019, 14, 825–831. [Google Scholar] [CrossRef]
- Levitan, B.A.; Goutte, L.; Pereg-Barnea, T. Surface theory of a second-order topological insulator beyond the Dirac approximation. Phys. Rev. B 2021, 104, 125105. [Google Scholar] [CrossRef]
- Jacak, L.; Hawrylak, P.; Wojs, A. Quantum Dots; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Bimberg, D.; Grundmann, M.; Ledentsov, N.N. Quantum Dot Heterostructures; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Hawrylak, P.; Korkusiński, M. Electronic Properties of Self-Assembled Quantum Dots; Springer: Berlin/Heidelberg, Germany, 2003; pp. 25–92. [Google Scholar]
- Güçlü, A.D.; Potasz, P.; Korkusinski, M.; Hawrylak, P. Graphene Quantum Dots; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40, 939–941. [Google Scholar] [CrossRef]
- Fafard, S.; Hinzer, K.; Raymond, S.; Dion, M.; McCaffrey, J.; Feng, Y.; Charbonneau, S. Red-emitting semiconductor quantum dot lasers. Science 1996, 274, 1350–1353. [Google Scholar] [CrossRef] [PubMed]
- Bayer, M.; Hawrylak, P.; Hinzer, K.; Fafard, S.; Korkusinski, M.; Wasilewski, Z.; Stern, O.; Forchel, A. Coupling and entangling of quantum states in quantum dot molecules. Science 2001, 291, 451–453. [Google Scholar] [CrossRef]
- Ciorga, M.; Sachrajda, A.S.; Hawrylak, P.; Gould, C.; Zawadzki, P.; Jullian, S.; Feng, Y.; Wasilewski, Z. Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy. Phys. Rev. B 2000, 61, R16315–R16318. [Google Scholar] [CrossRef] [Green Version]
- Benson, O.; Santori, C.; Pelton, M.; Yamamoto, Y. Regulated and Entangled Photons from a Single Quantum Dot. Phys. Rev. Lett. 2000, 84, 2513–2516. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, I.; Cogan, D.; Schmidgall, E.R.; Don, Y.; Gantz, L.; Kenneth, O.; Lindner, N.H.; Gershoni, D. Deterministic generation of a cluster state of entangled photons. Science 2016, 354, 434–437. [Google Scholar] [CrossRef] [Green Version]
- Laferrière, P.; Yeung, E.; Korkusinski, M.; Poole, P.J.; Williams, R.L.; Dalacu, D.; Manalo, J.; Cygorek, M.; Altintas, A.; Hawrylak, P. Systematic study of the emission spectra of nanowire quantum dots. Appl. Phys. Lett. 2021, 118, 161107. [Google Scholar] [CrossRef]
- Izquierdo, E.; Robin, A.; Keuleyan, S.; L’huillier, E.; Ithurria, S. Strongly Confined HgTe 2D Nanoplatelets as Narrow Near-Infrared Emitters. J. Am. Chem. Soc. 2016, 138, 10496–10501. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, N.; Greboval, C.; Qu, J.; Chu, A.; Rastogi, P.; Livache, C.; Khalili, A.; Xu, X.Z.; Baptiste, B.; Klotz, S.; et al. The Strong Confinement Regime in HgTe Two-Dimensional Nanoplatelets. J. Phys. Chem. 2020, 124, 23460–23468. [Google Scholar] [CrossRef]
- Keuleyan, S.; Lhuillier, E.; Guyot-Sionnest, P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 2011, 133, 16422–16424. [Google Scholar] [CrossRef] [PubMed]
- Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.; Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 2011, 5, 489–493. [Google Scholar] [CrossRef]
- Ozfidan, I.; Trojnar, A.H.; Korkusinski, M.; Hawrylak, P. Geometry, chirality, topology and electron–electron interactions in the quadruple quantum dot molecule. Solid State Commun. 2013, 172, 15–19. [Google Scholar] [CrossRef]
- Ozfidan, I.; Vladisavljevic, M.; Korkusinski, M.; Hawrylak, P. Electron-electron interactions, topological phase, and optical properties of a charged artificial benzene ring. Phys. Rev. B 2015, 92, 245304. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Kane, C.L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.; Lou, W.K. Helical Quantum States in HgTe Quantum Dots with Inverted Band Structures. Phys. Rev. Lett. 2011, 106, 206802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Lou, W.K.; Zhang, D.; Li, X.J.; Yang, W.; Chang, K. Single- and few-electron states in topological-insulator quantum dots. Phys. Rev. B 2014, 90, 115303. [Google Scholar] [CrossRef]
- Lou, W.K.; Yang, W.; Chang, K. Helical conducting edge states in narrow-gap semiconductors without band inversion. Phys. Rev. B 2022, 105, 045305. [Google Scholar] [CrossRef]
- Liu, F.; Li, J.; Zhu, J.J. The single and coupled BHZ quantum dots with spin-orbit interaction. Solid State Commun. 2021, 330, 114275. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Zhu, J.J. Electronic structure of rectangular HgTe quantum dots. Physica E 2017, 93, 58–62. [Google Scholar] [CrossRef]
- Korkusinski, M.; Hawrylak, P. Quantum strain sensor with a topological insulator HgTe quantum dot. Sci. Rep. 2014, 4, 4903. [Google Scholar] [CrossRef] [PubMed]
- Czyzyk, M.; Podgorny, M. Energy bands and optical properties of HgTe and CdTe calculated on the basis of the tight-binding model with spin-orbit interaction. Phys. Status Solidi B 1980, 98, 507. [Google Scholar] [CrossRef]
- Topalović, D.B.; Arsoski, V.V.; Tadić, M.Ž.; Peeters, F.M. Confined electron states in two-dimensional HgTe in magnetic field: Quantum dot versus quantum ring behavior. Phys. Rev. B 2019, 100, 125304. [Google Scholar] [CrossRef] [Green Version]
- Allan, G.; Delerue, C. Tight-binding calculations of the optical properties of HgTe nanocrystals. Phys. Rev. B 2012, 86, 165437. [Google Scholar] [CrossRef]
- Trzeciakowski, W. Effective-mass approximation in semiconductor heterostructures: One-dimensional analysis. Phys. Rev. B 1988, 38, 12493–12507. [Google Scholar] [CrossRef]
- Trzeciakowski, W. Boundary conditions and interface states in heterostructures. Phys. Rev. B 1988, 38, 4322–4325. [Google Scholar] [CrossRef] [PubMed]
- Novik, e.g.; Pfeuffer-Jeschke, A.; Jungwirth, T.; Latussek, V.; Becker, C.R.; Landwehr, G.; Buhmann, H.; Molenkamp, L.W. Band structure of semimagnetic Hg1−yMnyTe quantum wells. Phys. Rev. B 2005, 72, 035321. [Google Scholar] [CrossRef] [Green Version]
- Van de Walle, C.G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 1989, 39, 1871–1883. [Google Scholar] [CrossRef] [Green Version]
- Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 2012, 75, 076501. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puzantian, B.; Saleem, Y.; Korkusinski, M.; Hawrylak, P. Edge States and Strain-Driven Topological Phase Transitions in Quantum Dots in Topological Insulators. Nanomaterials 2022, 12, 4283. https://doi.org/10.3390/nano12234283
Puzantian B, Saleem Y, Korkusinski M, Hawrylak P. Edge States and Strain-Driven Topological Phase Transitions in Quantum Dots in Topological Insulators. Nanomaterials. 2022; 12(23):4283. https://doi.org/10.3390/nano12234283
Chicago/Turabian StylePuzantian, Benjamin, Yasser Saleem, Marek Korkusinski, and Pawel Hawrylak. 2022. "Edge States and Strain-Driven Topological Phase Transitions in Quantum Dots in Topological Insulators" Nanomaterials 12, no. 23: 4283. https://doi.org/10.3390/nano12234283
APA StylePuzantian, B., Saleem, Y., Korkusinski, M., & Hawrylak, P. (2022). Edge States and Strain-Driven Topological Phase Transitions in Quantum Dots in Topological Insulators. Nanomaterials, 12(23), 4283. https://doi.org/10.3390/nano12234283