Surface Enhancement Using Black Coatings for Sensor Applications
Abstract
:1. Introduction
2. Experimental
2.1. QCM Sensor Substrates
2.2. Preparation of Black Aluminium
2.3. Preparation of Black Gold
2.4. Instrumentation and Devices
2.4.1. Scanning Electron Microscopy
2.4.2. Atomic Force Microscopy
2.4.3. Impedance Spectroscopy of QCMs
2.4.4. Measurement of Sensor Response
3. Results and Discussion
3.1. Investigation of Morphology and Thickness of Black Metal Films by SEM
3.2. Atomic Force Microscopy
3.3. Impedance Spectra and Stability of QCM Sensors
3.4. Gas Sensor Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sauerbrey, G. Verwendung von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Z. Fiir Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Cooper, M.A.; Singleton, V.T. A Survey of the 2001 to 2005 Quartz Crystal Microbalance Biosensor Literature: Applications of Acoustic Physics to the Analysis of Biomolecular Interactions. J. Mol. Recognit. 2007, 20, 154–184. [Google Scholar] [CrossRef] [PubMed]
- Becker, B.; Cooper, M.A. A Survey of the 2006-2009 Quartz Crystal Microbalance Biosensor Literature. J. Mol. Recognit. 2011, 24, 754–787. [Google Scholar] [CrossRef] [PubMed]
- Speight, R.E.; Cooper, M.A. A Survey of the 2010 Quartz Crystal Microbalance Literature: A Survey of the 2010 Quartz Crystal Microbalance Literature. J. Mol. Recognit. 2012, 25, 451–473. [Google Scholar] [CrossRef] [PubMed]
- Röck, F.; Barsan, N.; Weimar, U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Torres, M.; Altuzar, V.; Mendoza-Barrera, C.; Beltrán-Pérez, G.; Castillo-Mixcóatl, J.; Muñoz-Aguirre, S. Discrimination Improvement of a Gas Sensors’ Array Using High-Frequency Quartz Crystal Microbalance Coated with Polymeric Films. Sensors 2020, 20, 6972. [Google Scholar] [CrossRef]
- Fernández, R.; Calero, M.; Jiménez, Y.; Arnau, A. A Real-Time Method for Improving Stability of Monolithic Quartz Crystal Microbalance Operating under Harsh Environmental Conditions. Sensors 2021, 21, 4166. [Google Scholar] [CrossRef]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.J.M.; Oliveira, A.R.; Roque, A.C.A. Protein-and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol. 2018, 36, 1244–1258. [Google Scholar] [CrossRef] [Green Version]
- Khadka, R.; Aydemir, N.; Carraher, C.; Hamiaux, C.; Colbert, D.; Cheema, J.; Malmström, J.; Kralicek, A.; Travas-Sejdic, J. An Ultrasensitive Electrochemical Impedance-Based Biosensor Using Insect Odorant Receptors to Detect Odorants. Biosens. Bioelectron. 2019, 126, 207–213. [Google Scholar] [CrossRef]
- More-Chevalier, J.; Novotný, M.; Hruška, P.; Fekete, L.; Fitl, P.; Bulíř, J.; Pokorný, P.; Volfová, L.; Havlová, Š.; Vondráček, M.; et al. Fabrication of Black Aluminium Thin Films by Magnetron Sputtering. RSC Adv. 2020, 10, 20765–20771. [Google Scholar] [CrossRef] [PubMed]
- Hruška, P. Effect of Roughness and Nanoporosity on Optical Properties of Black and Reflective Al Films Prepared by Magnetron Sputtering. J. Alloy. Compd. 2021, 9, 159744. [Google Scholar] [CrossRef]
- Novotný, M.; Fitl, P.; Sytchkova, A.; Bulíř, J.; Lančok, J.; Pokorný, P.; Najdek, D.; Bočan, J. Pulsed Laser Treatment of Gold and Black Gold Thin Films Fabricated by Thermal Evaporation. Open Phys. 2009, 7, 327. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Shan, F.; Zhou, H.-L.; Su, D.; Xue, X.-M.; Wu, J.-Y.; Chen, Y.-Z.; Zhao, N.; Zhang, T. Silver Nanoplate Aggregation Based Multifunctional Black Metal Absorbers for Localization, Photothermic Harnessing Enhancement and Omnidirectional Light Antireflection. J. Mater. Chem. C 2018, 6, 989–999. [Google Scholar] [CrossRef]
- Christiansen, A.B.; Caringal, G.P.; Clausen, J.S.; Grajower, M.; Taha, H.; Levy, U.; Asger Mortensen, N.; Kristensen, A. Black Metal Thin Films by Deposition on Dielectric Antireflective Moth-Eye Nanostructures. Sci. Rep. 2015, 5, 10563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strimer, P.; Gerbaux, X.; Hadni, A.; Souel, T. Black Coatings for Infrared and Visible, with High Electrical Resistivity. Infrared Phys. 1981, 21, 37–39. [Google Scholar] [CrossRef]
- Lysenko, V.S.; Mal’nev, A.F. Optical Characteristics of Metal Blacks. J. Appl. Spectrosc. 1969, 10, 566–570. [Google Scholar] [CrossRef]
- Qiu, J.; Wei, W.D. Surface Plasmon-Mediated Photothermal Chemistry. J. Phys. Chem. C 2014, 118, 20735–20749. [Google Scholar] [CrossRef]
- Wang, C.-M.; Chen, Y.-C.; Lee, M.-S.; Chen, K.-J. Microstructure and Absorption Property of Silver-Black Coatings. Jpn. J. Appl. Phys. 2000, 39, 551–554. [Google Scholar] [CrossRef]
- Gu, S.; Lu, Y.; Ding, Y.; Li, L.; Song, H.; Wang, J.; Wu, Q. A Droplet-Based Microfluidic Electrochemical Sensor Using Platinum-Black Microelectrode and Its Application in High Sensitive Glucose Sensing. Biosens. Bioelectron. 2014, 55, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Coxon, P.R.; Peters, M.; Hoex, B.; Cole, J.M.; Fray, D.J. Black Silicon: Fabrication Methods, Properties and Solar Energy Applications. Energy Environ. Sci. 2014, 7, 3223–3263. [Google Scholar] [CrossRef] [Green Version]
- Vorobyev, A.Y.; Guo, C. Metallic Light Absorbers Produced by Femtosecond Laser Pulses. Adv. Mech. Eng. 2010, 2, 452749. [Google Scholar] [CrossRef]
- Moreau, A.; Ciracì, C.; Mock, J.J.; Hill, R.T.; Wang, Q.; Wiley, B.J.; Chilkoti, A.; Smith, D.R. Controlled-Reflectance Surfaces with Film-Coupled Colloidal Nanoantennas. Nature 2012, 492, 86–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, K.; Kang, G.; Cho, S.K.; Park, W.; Kim, K.; Padilla, W.J. Flexible Thin-Film Black Gold Membranes with Ultrabroadband Plasmonic Nanofocusing for Efficient Solar Vapour Generation. Nat. Commun. 2015, 6, 10103. [Google Scholar] [CrossRef] [Green Version]
- More-Chevalier, J.; Yudin, P.V.; Cibert, C.; Bednyakov, P.; Fitl, P.; Valenta, J.; Novotný, M.; Savinov, M.; Poupon, M.; Zikmund, T.; et al. Black Aluminum-Coated Pt/Pb(Zr0.56 Ti0.44)O3/Pt Thin Film Structures for Pyroelectric Energy Harvesting from a Light Source. J. Appl. Phys. 2019, 126, 214501. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, X.-G.; Wang, S.-G.; Jin, H.-J. Nanoporous Aluminum by Galvanic Replacement: Dealloying and Inward-Growth Plating. J. Electrochem. Soc. 2018, 165, C492–C496. [Google Scholar] [CrossRef]
- Garoli, D.; Schirato, A.; Giovannini, G.; Cattarin, S.; Ponzellini, P.; Calandrini, E.; Proietti Zaccaria, R.; D’Amico, F.; Pachetti, M.; Yang, W.; et al. Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics. Nanomaterials 2020, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Wang, W.; Jiang, G.; Mei, X. Fabrication of Broadband Antireflective Black Metal Surfaces with Ultra-Light-Trapping Structures by Picosecond Laser Texturing and Chemical Fluorination. Appl. Phys. B 2016, 122, 180. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Colorizing Metals with Femtosecond Laser Pulses. Appl. Phys. Lett. 2008, 4, 041914. [Google Scholar] [CrossRef]
- Ou, Z.; Huang, M.; Zhao, F. Colorizing Pure Copper Surface by Ultrafast Laser-Induced near-Subwavelength Ripples. Opt. Express 2014, 22, 17254. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Multifunctional Surfaces Produced by Femtosecond Laser Pulses. J. Appl. Phys. 2015, 117, 033103. [Google Scholar] [CrossRef] [Green Version]
- Melikhova, O.; Čížek, J.; Hruška, P.; Lukáč, F.; Novotný, M.; More-Chevalier, J.; Fitl, P.; Liedke, M.O.; Butterling, M.; Wagner, A. Microstructure and Nanoscopic Porosity in Black Pd Films. Acta Phys. Pol. A 2020, 137, 222–226. [Google Scholar] [CrossRef]
- Melikhova, O.; Čížek, J.; Hruška, P.; Liedke, M.O.; Butterling, M.; Wagner, A.; Novotný, M.; More-Chevalier, J. Study of Nanoscopic Porosity in Black Metals by Positron Annihilation Spectroscopy. Acta Phys. Pol. B 2020, 51, 383. [Google Scholar] [CrossRef]
- Romanova, M.; More-Chevalier, J.; Novotny, M.; Pokorny, P.; Volfova, L.; Fitl, P.; Poplausks, R.; Dekhtyar, Y. Thermal Stability of Black Aluminum Films and Growth of Aluminum Nanowires from Mechanical Defects on the Film Surface during Annealing. Phys. Status Solidi B 2021, 259, 2100467. [Google Scholar] [CrossRef]
- Pokorný, P.; Novotný, M.; More-Chevalier, J.; Dekhtyar, Y.; Romanova, M.; Davídková, M.; Chertopalov, S.; Fitl, P.; Hruška, M.; Kawamura, M.; et al. Surface Processes on Thin Layers of Black Aluminum in Ultra-High Vacuum. Vacuum 2022, 205, 111377. [Google Scholar] [CrossRef]
- Vitrey, A.; Alvarez, R.; Palmero, A.; González, M.U.; García-Martín, J.M. Fabrication of Black-Gold Coatings by Glancing Angle Deposition with Sputtering. Beilstein J. Nanotechnol. 2017, 8, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Becker, W.; Fettig, R.; Gaymann, A.; Ruppel, W. Black Gold Deposits as Absorbers for Far Infrared Radiation. Phys. Stat. Sol. B 1996, 194, 241–255. [Google Scholar] [CrossRef]
- Casteleiro-Roca, J.L.; Calvo-Rolle, J.L.; Meizoso-Lopez, M.C.; Piñón-Pazos, A.; Rodríguez-Gómez, B.A. New Approach for the QCM Sensors Characterization. Sens. Actuators A Phys. 2014, 207, 1–9. [Google Scholar] [CrossRef]
- Burda, I. Quartz Crystal Microbalance with Impedance Analysis Based on Virtual Instruments: Experimental Study. Sensors 2022, 22, 1506. [Google Scholar] [CrossRef]
- Johannsmann, D. The Quartz Crystal Microbalance in Soft Matter Research; Soft and Biological Matter; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-07835-9. [Google Scholar]
- Okahata, Y.; Ariga, K. Swelling Behaviour and Stability of Langmuir-Blodgett Films Deposited on a Quartz Crystal Microbalance in a Water Phase. Thin Solid Film. 1989, 178, 465–471. [Google Scholar] [CrossRef]
- Currie, L.A. Nomenclature in Evaluation of Analytical Methods Including Detection and Quantification Capabilities. Pure Appl. Chem. 1995, 67, 1699–1723. [Google Scholar] [CrossRef]
- van Noort, D.; Rani, R.; Mandenius, C.-F. Improving the Sensitivity of a Quartz Crystal Microbalance for Biosensing by Using Porous Gold. Microchim. Acta 2001, 136, 49–53. [Google Scholar] [CrossRef]
- Hieda, M.; Garcia, R.; Dixon, M.; Daniel, T.; Allara, D.; Chan, M.H.W. Ultrasensitive Quartz Crystal Microbalance with Porous Gold Electrodes. Appl. Phys. Lett. 2004, 84, 628–630. [Google Scholar] [CrossRef]
- Chernavskii, P.A.; Peskov, N.V.; Mugtasimov, A.V.; Lunin, V.V. Oxidation of metal nanoparticles: Experiment and model. Russ. J. Phys. Chem. B 2007, 14, 394–411. [Google Scholar] [CrossRef]
- Evans-Nguyen, K.M.; Tao, S.C.; Zhu, H.; Cotter, R.J. Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: Detection of peptides in plasma. Anal. Chem. 2008, 80, 1448–1458. [Google Scholar] [CrossRef]
- Hondred, J.A.; Johnson, Z.T.; Claussen, J.C. Nanoporous gold peel-and-stick biosensors created with etching inkjet maskless lithography for electrochemical pesticide monitoring with microfluidics. J. Mater. Chem. C 2020, 8, 11376–11388. [Google Scholar] [CrossRef]
- Hruska, M.; Tomecek, D.; Havlova, S.; Fitl, P.; Guerkboukha, M.A.; Gadenne, V.; Patrone, L.; Vrnata, M. QCM Sensors Combining Highly Nanostructured Metal-Blacks Sublayers and Active Self-Assembled Monolayers. ECS Meet. Abstr. 2020, 31, 2314. [Google Scholar] [CrossRef]
Quantity | Value |
---|---|
Base Pressure | |
Working Pressure | |
Heat Power | |
Substrate Temperature |
Ethanol Vapours | Water Vapours | |||
---|---|---|---|---|
QCM Sensor | Sensitivity | Sensitivity Factor | Sensitivity | Sensitivity Factor |
Blank | 2.1 | 1.0 | 1.7 | 1.0 |
B-Au | 21.3 | 10.2 | 8.8 | 5.2 |
B-Al | 5.3 | 2.6 | 4.1 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hruška, M.; More-Chevalier, J.; Fitl, P.; Novotný, M.; Hruška, P.; Prokop, D.; Pokorný, P.; Kejzlar, J.; Gadenne, V.; Patrone, L.; et al. Surface Enhancement Using Black Coatings for Sensor Applications. Nanomaterials 2022, 12, 4297. https://doi.org/10.3390/nano12234297
Hruška M, More-Chevalier J, Fitl P, Novotný M, Hruška P, Prokop D, Pokorný P, Kejzlar J, Gadenne V, Patrone L, et al. Surface Enhancement Using Black Coatings for Sensor Applications. Nanomaterials. 2022; 12(23):4297. https://doi.org/10.3390/nano12234297
Chicago/Turabian StyleHruška, Martin, Joris More-Chevalier, Přemysl Fitl, Michal Novotný, Petr Hruška, Dejan Prokop, Petr Pokorný, Jan Kejzlar, Virginie Gadenne, Lionel Patrone, and et al. 2022. "Surface Enhancement Using Black Coatings for Sensor Applications" Nanomaterials 12, no. 23: 4297. https://doi.org/10.3390/nano12234297
APA StyleHruška, M., More-Chevalier, J., Fitl, P., Novotný, M., Hruška, P., Prokop, D., Pokorný, P., Kejzlar, J., Gadenne, V., Patrone, L., Vrňata, M., & Lančok, J. (2022). Surface Enhancement Using Black Coatings for Sensor Applications. Nanomaterials, 12(23), 4297. https://doi.org/10.3390/nano12234297