Beam Trajectory Analysis of Vertically Aligned Carbon Nanotube Emitters with a Microchannel Plate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design of One-Island Carbon Nanotube
2.2. Microchannel Plate Design
3. Results and Discussion
3.1. Current–Voltage Characteristics of One-Island Carbon Nanotubes
3.2. Measurement of Field Emission Microscopy Image of CNT Emitters
3.3. Spot Size Trajectory Analysis of Field Emission Electron Beam
3.4. Noise Effect of Focus Spot Size
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, S.; Tang, J.; Uzuhashi, J.; Ohkubo, T.; Hayami, W.; Yuan, J.; Takeguchi, M.; Mitome, M.; Qin, L.-C. A Stable LaB 6 Nanoneedle Field-Emission Point Electron Source. Nanoscale Adv. 2021, 3, 2787–2792. [Google Scholar] [CrossRef] [PubMed]
- Tonomura, A.; Matsuda, T.; Endo, J.; Todokoro, H.; Komoda, T. Development of a Field Emission Electron Microscope. Microscopy 1979, 28, 1–11. [Google Scholar]
- Pawley, J.B. The Development of Field-Emission Scanning Electron Microscopy for Imaging Biological Surfaces. Scanning 1997, 19, 324–336. [Google Scholar] [PubMed]
- Shao, X.; Srinivasan, A.; Ang, W.K.; Khursheed, A. A High-Brightness Large-Diameter Graphene Coated Point Cathode Field Emission Electron Source. Nat. Commun. 2018, 9, 1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houdellier, F.; Caruso, G.M.; Weber, S.; Kociak, M.; Arbouet, A. Development of a High Brightness Ultrafast Transmission Electron Microscope Based on a Laser-Driven Cold Field Emission Source. Ultramicroscopy 2018, 186, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, B.C.; Kim, J.S.; Mumtaz, S.; Paneru, R.; Lamichhane, P.; Min, B.K.; Jang, J.H.; Choi, E.H. Effective Radius of Adatoms/Single Atom of Polycrystalline W Nanotip in Gas Field Ion Source. Curr. Appl. Phys. 2020, 20, 707–714. [Google Scholar] [CrossRef]
- Vladár, A.E.; Radi, Z.; Postek, M.T.; Joy, D.C. Nanotip Electron Gun for the Scanning Electron Microscope. Scanning 2006, 28, 133–141. [Google Scholar] [CrossRef]
- Hayashi, S.; Ono, M.; Tomonaga, S.; Nakanishi, H. A Novel Method for Formation of Single Crystalline Tungsten Nanotip. Micro Nano Syst. Lett. 2016, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.R.; Hwang, O.J.; Cho, B.; Park, K.C. Scanning Electron Imaging with Vertically Aligned Carbon Nanotube (CNT) Based Cold Cathode Electron Beam (C-Beam). Vacuum 2020, 182, 109696. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, J.; Xiu, Y.; Sun, Y.; Hess, D.W.; Wong, C.P. Growth and Electrical Characterization of High-Aspect-Ratio Carbon Nanotube Arrays. Carbon 2006, 44, 253–258. [Google Scholar] [CrossRef]
- Calderón-Colón, X.; Geng, H.; Gao, B.; An, L.; Cao, G.; Zhou, O. A Carbon Nanotube Field Emission Cathode with High Current Density and Long-Term Stability. Nanotechnology 2009, 20, 325707. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-K.; Kim, P. Unusually High Thermal Conductivity in Carbon Nanotubes. In High Thermal Conductivity Materials; Springer: Berlin, Germany, 2006; pp. 227–265. [Google Scholar]
- Berber, S.; Kwon, Y.-K.; Tománek, D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, 4613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- Konishi, H.; Murata, Y.; Wongwiriyapan, W.; Kishida, M.; Tomita, K.; Motoyoshi, K.; Honda, S.; Katayama, M.; Yoshimoto, S.; Kubo, K.; et al. High-Yield Synthesis of Conductive Carbon Nanotube Tips for Multiprobe Scanning Tunneling Microscope. Rev. Sci. Instrum. 2007, 78, 13703. [Google Scholar] [CrossRef]
- Kung, S.-C.; Hwang, K.C.; Lin, I.N. Oxygen and Ozone Oxidation-Enhanced Field Emission of Carbon Nanotubes. Appl. Phys. Lett. 2002, 80, 4819–4821. [Google Scholar] [CrossRef]
- Lee, R.S.; Kim, H.J.; Fischer, J.E.; Thess, A.; Smalley, R.E. Conductivity Enhancement in Single-Walled Carbon Nanotube Bundles Doped with K and Br. Nature 1997, 388, 255–257. [Google Scholar] [CrossRef]
- Zhao, W.-J.; Sawada, A.; Takai, M. Field Emission Characteristics of Screen-Printed Carbon Nanotube after Laser Irradiation. Jpn. J. Appl. Phys. 2002, 41, 4314. [Google Scholar] [CrossRef]
- Ryu, J.H.; Kim, K.S.; Lee, C.S.; Jang, J.; Park, K.C. Effect of Electrical Aging on Field Emission from Carbon Nanotube Field Emitter Arrays. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 2008, 26, 856–859. [Google Scholar] [CrossRef]
- Kruit, P.; Bezuijen, M.; Barth, J.E. Source Brightness and Useful Beam Current of Carbon Nanotubes and Other Very Small Emitters. J. Appl. Phys. 2006, 99, 24315. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.R.; Yang, H.H.; Park, K.C. Fabrication of a High-Resolution Electron Beam with a Carbon Nanotube Cold-Cathode. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2017, 35, 06G804. [Google Scholar] [CrossRef]
- Lee, S.W.; Kang, J.S.; Lee, H.R.; Park, S.Y.; Jang, J.; Park, K.C. Enhanced and Stable Electron Emission of Carbon Nanotube Emitters with Graphitization. Vacuum 2015, 121, 212–216. [Google Scholar] [CrossRef]
- Uh, H.S.; Park, S. Improved Field Emission Properties from Carbon Nanotubes Grown onto Micron-Sized Arrayed Silicon Pillars with Pyramidal Bases. Diam. Relat. Mater. 2015, 54, 74–78. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Jaffray, D.A.; Yeow, J.T.W. A Novel Field Emission Microscopy Method to Study Field Emission Characteristics of Freestanding Carbon Nanotube Arrays. Nanotechnology 2017, 28, 155704. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Z.; He, F.; Liu, M.; Bai, B.; Liu, W.; Qiu, X.; Zhou, H.; Li, C.; Dai, Q. Enhanced Field Emission from a Carbon Nanotube Array Coated with a Hexagonal Boron Nitride Thin Film. Small 2015, 11, 3710–3716. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.P.; Park, S.; Yeo, S.J.; Jung, J.; Cho, C.; Paik, S.H.; Park, H.; Cho, Y.C.; Kim, S.H.; Shin, J.H.; et al. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-Ray Source in Medical Imaging. Materials 2017, 10, 878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Husain, S.; Ali, J.; Husain, M.; Husain, M. Field Emission Study of Carbon Nanotubes Forest and Array Grown on Si Using Fe as Catalyst Deposited by Electro-Chemical Method. J. Nanosci. Nanotechnol. 2012, 12, 2829–2832. [Google Scholar] [CrossRef]
- Teo, K.B.K.; Chhowalla, M.; Amaratunga, G.A.J.; Milne, W.I.; Legagneux, P.; Pirio, G.; Gangloff, L.; Pribat, D.; Semet, V.; Binh, V.T.; et al. Fabrication and Electrical Characteristics of Carbon Nanotube-Based Microcathodes for Use in a Parallel Electron-Beam Lithography System. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 2003, 21, 693–697. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Kang, J.S.; Park, K.C. Carbon Nanotube Electron Emitter for X-ray Imaging. Materials 2012, 5, 2353–2359. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-H.; Sie, C.-L.; Chen, C.-A.; Chang, H.-C.; Shih, Y.-T.; Chang, H.-Y.; Su, W.-J.; Lee, K.-Y. Field Emission Characteristics of the Structure of Vertically Aligned Carbon Nanotube Bundles. Nanoscale Res. Lett. 2015, 10, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seelaboyina, R.; Huang, J.; Choi, W.B. Enhanced Field Emission of Thin Multiwall Carbon Nanotubes by Electron Multiplication from Microchannel Plate. Appl. Phys. Lett. 2006, 88, 194104. [Google Scholar] [CrossRef]
- Yu, S.; Jin, S.; Yi, W.; Kang, J.; Jeong, T.; Choi, Y.; Lee, J.; Heo, J.; Lee, N.S.; Yoo, J.-B.; et al. Undergate-Type Triode Carbon Nanotube Field Emission Display with a Microchannel Plate. Jpn. J. Appl. Phys. 2001, 40, 6088. [Google Scholar] [CrossRef]
- Khamdokhov, Z.M.; Margushev, Z.C.; Khamdokhov, E.Z.; Teshev, R.S.; Bavizhev, M.D. Field-Emission Cathodes Based on Microchannel Plates. Semiconductors 2019, 53, 2037–2039. [Google Scholar] [CrossRef]
- Jönsson, M.; Nerushev, O.A.; Campbell, E.E.B. Dc Plasma-Enhanced Chemical Vapour Deposition Growth of Carbon Nanotubes and Nanofibres: In Situ Spectroscopy and Plasma Current Dependence. Appl. Phys. A 2007, 88, 261–267. [Google Scholar] [CrossRef]
- Ryu, J.H.; Bae, N.Y.; Oh, H.M.; Zhou, O.; Jang, J.; Park, K.C. Stabilized Electron Emission from Silicon Coated Carbon Nanotubes for a High-Performance Electron Source. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2011, 29, 02B120. [Google Scholar] [CrossRef]
- Park, K.C.; Ryu, J.H.; Kim, K.S.; Yu, Y.Y.; Jang, J. Growth of Carbon Nanotubes with Resist-Assisted Patterning Process. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 2007, 25, 1261–1264. [Google Scholar] [CrossRef]
- Kang, J.S.; Park, K.C. Electron Extraction Electrode for a High-Performance Electron Beam from Carbon Nanotube Cold Cathodes. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2017, 35, 02C109. [Google Scholar] [CrossRef]
- Lim, S.H.; Park, K.C.; Moon, J.H.; Yoon, H.S.; Pribat, D.; Bonnassieux, Y.; Jang, J. Controlled Density of Vertically Aligned Carbon Nanotubes in a Triode Plasma Chemical Vapor Deposition System. Thin Solid Films 2006, 515, 1380–1384. [Google Scholar] [CrossRef]
- Saito, Y. Carbon Nanotube and Related Field Emitters: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978-3-527-32734-8. [Google Scholar]
- Chouhan, V.; Noguchi, T.; Kato, S. Field Emission from Optimized Structure of Carbon Nanotube Field Emitter Array. J. Appl. Phys. 2016, 119, 134303. [Google Scholar] [CrossRef]
- Kang, J.S.; Hong, J.H.; Chung, M.T.; Park, K.C. Highly Stable Carbon Nanotube Cathode for Electron Beam Application. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2016, 34, 02G104. [Google Scholar] [CrossRef]
- Sun, Y.; Shin, D.H.; Yun, K.N.; Hwang, Y.M.; Song, Y.; Leti, G.; Jeon, S.-G.; Kim, J.-I.; Saito, Y.; Lee, C.J. Field Emission Behavior of Carbon Nanotube Field Emitters after High Temperature Thermal Annealing. AIP Adv. 2014, 4, 77110. [Google Scholar] [CrossRef]
- Helfenstein, P.; Kirk, E.; Jefimovs, K.; Vogel, T.; Escher, C.; Fink, H.-W.; Tsujino, S. Highly Collimated Electron Beams from Double-Gate Field Emitter Arrays with Large Collimation Gate Apertures. Appl. Phys. Lett. 2011, 98, 61502. [Google Scholar] [CrossRef]
- Helfenstein, P.; Guzenko, V.A.; Fink, H.-W.; Tsujino, S. Electron Beam Collimation with a 40 000 Tip Metallic Double-Gate Field Emitter Array and in-Situ Control of Nanotip Sharpness Distribution. J. Appl. Phys. 2013, 113, 43306. [Google Scholar] [CrossRef] [Green Version]
- Helfenstein, P.; Jefimovs, K.; Kirk, E.; Escher, C.; Fink, H.-W.; Tsujino, S. Fabrication of Metallic Double-Gate Field Emitter Arrays and Their Electron Beam Collimation Characteristics. J. Appl. Phys. 2012, 112, 93307. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Sul, I.; Cho, B. Edge Shadow Projection Method for Measuring the Brightness of Electron Guns. Rev. Sci. Instrum. 2017, 88, 23302. [Google Scholar] [CrossRef] [PubMed]
- Krysztof, M. Field-Emission Electron Gun for a MEMS Electron Microscope. Microsyst. Nanoeng. 2021, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Urata, T.; Cho, B.; Rokuta, E.; Oshima, C.; Terui, Y.; Saito, H.; Yonezawa, A.; Tsong, T.T. Highly Efficient Electron Gun with a Single-Atom Electron Source. Appl. Phys. Lett. 2007, 90, 143120. [Google Scholar] [CrossRef]
- Kuo, H.-S.; Hwang, I.-S.; Fu, T.-Y.; Wu, J.-Y.; Chang, C.-C.; Tsong, T.T. Preparation and Characterization of Single-Atom Tips. Nano Lett. 2004, 4, 2379–2382. [Google Scholar] [CrossRef]
- Kim, D.; Andrews, H.L.; Choi, B.K.; Fleming, R.L.; Huang, C.-K.; Kwan, T.J.T.; Lewellen, J.W.; Nichols, K.; Pavlenko, V.; Simakov, E.I. Divergence Study and Emittance Measurements for the Electron Beam Emitted from a Diamond Pyramid. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 953, 163055. [Google Scholar] [CrossRef]
- Urban, R.; Wolkow, R.A.; Pitters, J.L. Evaluating Angular Ion Current Density for Atomically Defined Nanotips. Microsc. Microanal. 2014, 20, 1514–1520. [Google Scholar] [CrossRef]
- Pitters, J.L.; Urban, R.; Vesa, C.; Wolkow, R.A. Tip Apex Shaping of Gas Field Ion Sources. Ultramicroscopy 2013, 131, 56–60. [Google Scholar] [CrossRef]
- Sim, K.S.; Thong, J.T.L.; Phang, J.C.H. Effect of Shot Noise and Secondary Emission Noise in Scanning Electron Microscope Images. Scanning J. Scanning Microsc. 2004, 26, 36–40. [Google Scholar] [CrossRef]
- Wang, H.; Du, Y.; Feng, Y.; Lv, Y.; Hu, X.; Qian, Y. Effective Evaluation of the Noise Factor of Microchannel Plate. Adv. Optoelectron. 2015, 2015, 781327. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Qian, Y.; Qiu, Y. New Approach to Noise Factor Measurement on Microchannel Plate of Optoelectronic Detector. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 21–25 August 2011; Infrared Sensors, Devices, and Applications; and Single Photon Imaging II. Volume 8155, pp. 195–200. [Google Scholar]
- Jones, M.; Harvey, M.; Bertsche, W.; Murray, A.J.; Appleby, R.B. Measuring the Gain of a Microchannel Plate/Phosphor Assembly Using a Convolutional Neural Network. IEEE Trans. Nucl. Sci. 2019, 66, 2430–2434. [Google Scholar] [CrossRef] [Green Version]
- Emmrich, D.; Beyer, A.; Nadzeyka, A.; Bauerdick, S.; Meyer, J.C.; Kotakoski, J.; Gölzhäuser, A. Nanopore Fabrication and Characterization by Helium Ion Microscopy. Appl. Phys. Lett. 2016, 108, 163103. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, R.; Urban, R.; Salomons, M.; Cloutier, M.; Mizuno, S.; Wolkow, R.; Pitters, J. Field Assisted Reactive Gas Etching of Multiple Tips Observed Using FIM. Ultramicroscopy 2021, 223, 113216. [Google Scholar] [CrossRef]
- Bliznyuk, V.N.; LaJeunesse, D.; Boseman, A. Application of Helium Ion Microscopy to Nanostructured Polymer Materials. Nanotechnol. Rev. 2014, 3, 361–387. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Park, K.C. Gate Offset and Emitter Design Effects of Triode Cold Cathode Electron Beams on Focal Spot Sizes for X-Ray Imaging Techniques. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2022, 40, 22204. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, B.C.; Ketan, B.; Kim, J.S.; Yoo, S.T.; Choi, E.H.; Park, K.C. Beam Trajectory Analysis of Vertically Aligned Carbon Nanotube Emitters with a Microchannel Plate. Nanomaterials 2022, 12, 4313. https://doi.org/10.3390/nano12234313
Adhikari BC, Ketan B, Kim JS, Yoo ST, Choi EH, Park KC. Beam Trajectory Analysis of Vertically Aligned Carbon Nanotube Emitters with a Microchannel Plate. Nanomaterials. 2022; 12(23):4313. https://doi.org/10.3390/nano12234313
Chicago/Turabian StyleAdhikari, Bishwa Chandra, Bhotkar Ketan, Ju Sung Kim, Sung Tae Yoo, Eun Ha Choi, and Kyu Chang Park. 2022. "Beam Trajectory Analysis of Vertically Aligned Carbon Nanotube Emitters with a Microchannel Plate" Nanomaterials 12, no. 23: 4313. https://doi.org/10.3390/nano12234313
APA StyleAdhikari, B. C., Ketan, B., Kim, J. S., Yoo, S. T., Choi, E. H., & Park, K. C. (2022). Beam Trajectory Analysis of Vertically Aligned Carbon Nanotube Emitters with a Microchannel Plate. Nanomaterials, 12(23), 4313. https://doi.org/10.3390/nano12234313