A Comprehensive Study of Synthesis and Analysis of Anisotropic Iron Oxide and Oxyhydroxide Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Anisotropic Nanoparticles
2.3. Characterization of the Samples
3. Results and Discussion
Type of ANPs | Methods of Analysis | ||||||
---|---|---|---|---|---|---|---|
Structure, Phase Composition, and Functional Groups | Morphology | Magnetic Properties | Ref. | ||||
XRD | Raman | IR | SEM | TEM [FFT] a | VSM Ms [Coercivity] | ||
β-FeOOH (a), Fe3O4 (b) nanorods | (a) β-FeOOH phase (b) Fe3O4 phase | – | – | – | (a) D b = 10–50 nm L c = 50–400 nm (b) D = 15 nm L = 45, 400 nm [(311) plane, d d = 0.2 nm] | (b) 78 emu/g [38 Oe for AR e = 4.5, 334 Oe for AR = 10] | [67] |
Fe3O4 nanowires | Fe3O4 phase | – | – | – | D = 20 nm L = 800 nm [(111) plane, d = 0.48 nm] | 35.2 emu/g [not studied] | [29] |
Fe3O4, spherical (a), cubic (b), rod shaped (c) | (a) Fe3O4 phase (b) Fe3O4 phase (c) Fe3O4 phase | – | – | (a) L = 25 nm (b) L = 63 nm (c) D = 12 nm L = 60–120 nm | – | (a) 60.7 emu/g (b) 60.4 emu/g (c) 35.4 emu/g [not studied] | [53] |
Fe3O4 nanobelts | Fe3O4 phase (XRD pattern contains reflections of side phase) | – | – | – | D = 70–90 nm L = 10–15 μm | 54 emu/g [not studied] | [32] |
Fe3O4 nanorods | Fe3O4 phase | – | – | Particles size is not discussed | D = 10 nm L = 150 nm [not studied] | 28.7 emu/g [not studied] | [33] |
Fe3O4 nanorods | Fe3O4 phase | – | 597 cm−1 (Fe–O vibrations in Fe3O4) f | – | D = 8–64 nm L = 58–250 nm [(220) plane, d = 0.29 nm] | 71.3 emu/g [not studied] | [64] |
Fe3O4 nanorods | Fe3O4 phase | 672 cm−1 (A1g mode of Fe3O4) bands of other iron oxides and oxyhydroxydes (γ-Fe2O3, α-FeOOH) | – | – | D = 10 nm L = 150 nm [(220) plane, d = 0.296 nm; (200) plane, d = 0.42 nm] | – | [66] |
γ-Fe2O3 (a), α-FeOOH (b), γ-FeOOH (spherical, rod shaped) | Individual γ-Fe2O3, α-FeOOH, γ-FeOOH phases of their mixture g | – | 449 and 632 cm−1 Fe–O stretching 583 cm−1 typical band of Fe2O3 | – | Particles size is not discussed [(220) plane, d = 0.296 nm; (200) plane, d = 0.42 nm] | 54 emu/g [not studied] | [68] |
Fe3O4, rod shaped (a), cubic (b), spherical (c) | (a) Fe3O4 phase (XRD contains side reflections) (b) Fe3O4 phase (c) Fe3O4 phase | (a–c) 300, 540, and 670 cm−1 (vibration modes of Fe3O4) 350, 500, and 700 cm−1 (vibration modes of γ-Fe2O3) | (a) 896, 796, and 628 cm−1 (characteristic bands of α-FeOOH) (b) and (c) 580 cm−1 (Fe–O vibrations in Fe3O4) | – | (a) D and L of rods are not discussed (b) L = 30 nm (c) L = 13 nm [not studied] | (a) 52 emu/g [48 Oe] (b) 81 emu/g [61 Oe] (c) 60 emu/g [0 Oe] | [69] |
α-FeOOH (a), α-Fe2O3 (b), Fe3O4 (c) nanorods | (a) α-FeOOH phase (b) α-Fe2O3 phase (c) Fe3O4 phase | – | – | (a) D = 70 nm L = 500 nm (b) D = 70 nm L = 120–200 nm (c) D = 70 nm L = 500 nm | Particles size is not discussed (a) [(110) plane, d = 0.42 nm] (b) [(012) plane, d = 0.368 nm; (110) plane, d = 0.251 nm] (c) [(311) plane, d = 0.25 nm; (400) plane, d = 0.2 nm] | – | [70] |
β-FeOOH (a), Fe3O4 (b) nanorods | (a) β-FeOOH phase (b) Fe3O4 phase | – | (a) 556, 614, 695 and 825 cm−1 (Fe–O vibrational modes of β-FeOOH) (b) 569 cm−1 (Fe–O vibrational mode of Fe3O4) | – | (a) D = 3–12 nm L = 25–70 nm (b) D = 3–12 nm L = 30, 40, 50, 60, 70 nm [not studied] | (b) 50–66 emu/g for 30–70 nm ANPs [not studied] | [71] |
β-FeOOH (a), Fe3O4 (b) (spherical, ellipsoids, hollow ellipsoids) | (a) β-FeOOH phase (b) Fe3O4 phase | – | – | – | (a) D = 38 nm L = 172 nm (b) D = 38 nm (spheres); D = 38 nm L = 172 nm (ellipsoids); D = 38 nm L = 172 nm (hollow ellipsoids) [not studied] | (b) 84.2 emu/g [5.0 Oe] (spheres); 65.6 emu/g [6.5 Oe] (ellipsoids); 53.0 emu/g [37.8 Oe] (hollow ellipsoids) | [72] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huo, D.; Kim, M.J.; Lyu, Z.; Shi, Y.; Wiley, B.J.; Xia, Y. One-dimensional metal nanostructures: From colloidal syntheses to applications. Chem. Rev. 2019, 119, 8972–9073. [Google Scholar] [CrossRef] [PubMed]
- Machín, A.; Fontánez, K.; Arango, J.C.; Ortiz, D.; De León, J.; Pinilla, S.; Nicolosi, V.; Petrescu, F.I.; Morant, C.; Márquez, F. One-Dimensional (1D) Nanostructured Materials for Energy Applications. Materials 2021, 14, 2609. [Google Scholar] [CrossRef]
- Lisjak, D.; Mertelj, A. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Prog. Mater. Sci. 2018, 95, 286–328. [Google Scholar] [CrossRef]
- Andrade, R.G.; Veloso, S.R.; Castanheira, E.M. Shape anisotropic iron oxide-based magnetic nanoparticles: Synthesis and biomedical applications. Int. J. Mol. Sci. 2020, 21, 2455. [Google Scholar] [CrossRef] [Green Version]
- Ramzannezhad, A.; Gill, P.; Bahari, A. Fabrication of magnetic nanorods and their applications in medicine. BioNanoMaterials 2017, 18, 1–31. [Google Scholar] [CrossRef]
- Rajan, A.; Sahu, N.K. Hydrophobic-to-Hydrophilic Transition of Fe3O4 Nanorods for Magnetically Induced Hyperthermia. ACS Appl. Nano Mater. 2021, 4, 4642–4653. [Google Scholar] [CrossRef]
- Xiong, Y.; Tong, Q.; Shan, W.; Xing, Z.; Wang, Y.; Wen, S.; Lou, Z. Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon. Appl. Surf. Sci. 2017, 416, 618–627. [Google Scholar] [CrossRef]
- An, D.; Nishioka, S.; Yasuda, S.; Kanazawa, T.; Kamakura, Y.; Yokoi, T.; Nozawa, S.; Maeda, K. Alumina-Supported Alpha-Iron (III) Oxyhydroxide as a Recyclable Solid Catalyst for CO2 Photoreduction under Visible Light. Angew. Chem. Int. Ed. 2022, 61, e202204948. [Google Scholar] [CrossRef]
- Wu, H.; Lee, D.; Tufa, L.T.; Kim, J.; Lee, J. Synthesis mechanism of magnetite nanorods containing ordered mesocages. Chem. Mater. 2019, 31, 2263–2268. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, Z.; Song, J.; Chen, X. Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem. Soc. Rev. 2019, 48, 5140–5176. [Google Scholar] [CrossRef]
- Pearce, A.K.; Wilks, T.R.; Arno, M.C.; O’Reilly, R.K. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat. Rev. Chem. 2021, 5, 21–45. [Google Scholar] [CrossRef]
- Fedotova, J.; Ivanov, D.; Mazanik, A.; Svito, I.; Streltsov, E.; Saad, A.; Zukowski, P.; Fedotov, A.; Bury, P.; Apel, P.Y. Anisotropic magnetoresistance of Ni nanorod arrays in porous SiO2/Si templates manufactured by Swift Heavy Ion-Induced Modification. Acta Phys. Pol. A 2015, 128, 894–896. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wang, D.; Zhang, J.; Li, Y. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem.-Asian J. 2006, 1, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Cotin, G.; Perton, F.; Blanco-Andujar, C.; Pichon, B.; Mertz, D.; Bégin-Colin, S. Design of anisotropic iron-oxide-based nanoparticles for magnetic hyperthermia. In Nanomaterials for Magnetic and Optical Hyperthermia Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 41–60. [Google Scholar] [CrossRef]
- Nikitin, A.; Khramtsov, M.; Garanina, A.; Mogilnikov, P.; Sviridenkova, N.; Shchetinin, I.; Savchenko, A.; Abakumov, M.; Majouga, A. Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia. J. Magn. Magn. Mater. 2019, 469, 443–449. [Google Scholar] [CrossRef]
- Fedotova, Y.A.; Ivanov, D.; Ivanova, Y.A.; Saad, A.; Mazanik, A.; Svito, I.; Strel’tsov, E.; Fedotov, A.; Tyutyunnikov, S.; Apel, P.Y. Enhanced magnetoresistive effect in the arrays of nickel nanorods on silicon substrates. Russ. Microelectron. 2015, 44, 512–516. [Google Scholar] [CrossRef]
- Niraula, G.; Coaquira, J.A.; Zoppellaro, G.; Villar, B.M.; Garcia, F.; Bakuzis, A.F.; Longo, J.o.P.; Rodrigues, M.C.; Muraca, D.; Ayesh, A.I. Engineering shape anisotropy of Fe3O4-γ-Fe2O3 hollow nanoparticles for magnetic hyperthermia. ACS Appl. Nano Mater. 2021, 4, 3148–3158. [Google Scholar] [CrossRef]
- Ahn, T.; Kim, J.H.; Yang, H.-M.; Lee, J.W.; Kim, J.-D. Formation pathways of magnetite nanoparticles by coprecipitation method. J. Phys. Chem. C 2012, 116, 6069–6076. [Google Scholar] [CrossRef]
- Hinrichs, S.; Grossmann, L.; Clasen, E.; Grotian genannt Klages, H.; Skroblin, D.; Gollwitzer, C.; Meyer, A.; Hankiewicz, B. Goethite nanorods: Synthesis and investigation of the size effect on their orientation within a magnetic field by SAXS. Nanomaterials 2020, 10, 2526. [Google Scholar] [CrossRef]
- Chen, W.; Dai, P.; Hong, C.; Zheng, C.; Wang, W.; Yan, X. One-step synthesis and assembly of spindle-shaped akaganéite nanoparticles via sonochemistry. CrystEngComm 2018, 20, 2989–2995. [Google Scholar] [CrossRef]
- Cotin, G.; Kiefer, C.; Perton, F.; Ihiawakrim, D.; Blanco-Andujar, C.; Moldovan, S.; Lefevre, C.; Ersen, O.; Pichon, B.; Mertz, D. Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nanomaterials 2018, 8, 881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Feng, J.; Guo, X.; Hong, J.; Ding, W. One-step wet chemistry for preparation of magnetite nanorods. Mater. Lett. 2005, 59, 985–988. [Google Scholar] [CrossRef]
- Wan, J.; Chen, X.; Wang, Z. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J. Cryst. Growth 2005, 276, 571–576. [Google Scholar] [CrossRef]
- Adhikari, M.; Echeverria, E.; Risica, G.; McIlroy, D.N.; Nippe, M.; Vasquez, Y. Synthesis of Magnetite Nanorods from the Reduction of Iron Oxy-Hydroxide with Hydrazine. ACS Omega 2020, 5, 22440–22448. [Google Scholar] [CrossRef] [PubMed]
- Podoliak, N.; Buchnev, O.; Bavykin, D.V.; Kulak, A.N.; Kaczmarek, M.; Sluckin, T.J. Magnetite nanorod thermotropic liquid crystal colloids: Synthesis, optics and theory. J. Colloid Interface Sci. 2012, 386, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Lian, S.; Wang, E.; Kang, Z.; Bai, Y.; Gao, L.; Jiang, M.; Hu, C.; Xu, L. Synthesis of magnetite nanorods and porous hematite nanorods. Solid State Commun. 2004, 129, 485–490. [Google Scholar] [CrossRef]
- Attallah, O.A.; Girgis, E.; Abdel-Mottaleb, M.M. Tailored super magnetic nanoparticles synthesized via template free hydrothermal technique. J. Magn. Magn. Mater. 2016, 397, 164–175. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q.; Zeng, C.; Hou, B. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 2004, 16, 137–140. [Google Scholar] [CrossRef]
- Sun, H.; Chen, B.; Jiao, X.; Jiang, Z.; Qin, Z.; Chen, D. Solvothermal synthesis of tunable electroactive magnetite nanorods by controlling the side reaction. J. Phys. Chem. C 2012, 116, 5476–5481. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, F.; Jiang, Q.; Du, B.; Sun, H. 12-Hydrothermal synthesis and characterization of Fe3O4 nanorods. J. Inorg. Organomet. Polym. Mater. 2013, 23, 379–384. [Google Scholar] [CrossRef]
- Li, L.; Chu, Y.; Liu, Y.; Wang, D. Solution-phase synthesis of single-crystalline Fe3O4 magnetic nanobelts. J. Alloys Compd. 2009, 472, 271–275. [Google Scholar] [CrossRef]
- Das, R.; Cardarelli, J.A.; Phan, M.-H.; Srikanth, H. Magnetically tunable iron oxide nanotubes for ultifunctional biomedical applications. J. Alloys Compd. 2019, 789, 323–329. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Tang, F. Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity. Chem. Commun. 2005, 3, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Jiang, L.; Mai, Z.; Zhu, D. Polymer-controlled synthesis of Fe3O4 single-crystal nanorods. J. Colloid Interface Sci. 2004, 278, 372–375. [Google Scholar] [CrossRef]
- Salem, N.M.; Awwad, A.M. A Green and Facile Approach for Synthesis of Magnetite Nanoparticles. Nanosci. Nanotechnol. 2012, 2, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yang, H.; Fu, W.; Du, K.; Sui, Y.; Chen, J.; Zeng, Y.; Li, M.; Zou, G. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J. Magn. Magn. Mater. 2007, 309, 307–311. [Google Scholar] [CrossRef]
- Legodi, M.A.; de Waal, D. The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes Pigm. 2007, 74, 161–168. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Carley, A.; Jackson, S.; O’shea, J.; Roberts, M. The formation and characterisation of Ni3+—An X-ray photoelectron spectroscopic investigation of potassium-doped Ni (110)–O. Surf. Sci. 1999, 440, L868–L874. [Google Scholar] [CrossRef]
- Jelle, A.A.; Hmadeh, M.; O’Brien, P.G.; Perovic, D.D.; Ozin, G.A. Photocatalytic properties of all four polymorphs of nanostructured iron oxyhydroxides. ChemNanoMat 2016, 2, 1047–1054. [Google Scholar] [CrossRef]
- Noval, V.E.; Carriazo, J.G. Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles. Mater. Res. 2019, 22, e20180660. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Baig, R.; Nadagouda, M.N.; Varma, R.S. Oxidative CH activation of amines using protuberant lychee-like goethite. Sci. Rep. 2018, 8, 2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Wang, M.; Xiong, J.; Hou, J.; Wang, X.; Tan, W. Al-substitution-induced defect sites enhance adsorption of Pb2+ on hematite. Environ. Sci. Nano 2019, 6, 1323–1331. [Google Scholar] [CrossRef]
- Pomies, M.; Menu, M.; Vignaud, C. TEM observations of goethite dehydration: Application to archaeological samples. J. Eur. Ceram. Soc. 1999, 19, 1605–1614. [Google Scholar] [CrossRef]
- Naono, H.; Fujiwara, R. Micropore formation due to thermal decomposition of acicular microcrystals of α-FeOOH. J. Colloid Interface Sci. 1980, 73, 406–415. [Google Scholar] [CrossRef]
- Takashima, T.; Hemmi, S.; Liu, Q.; Irie, H. Facet-dependent activity of hematite nanocrystals toward the oxygen evolution reaction. Catal. Sci. Technol. 2020, 10, 3748–3754. [Google Scholar] [CrossRef]
- Karami, H. Heavy metal removal from water by magnetite nanorods. Chem. Eng. J. 2013, 219, 209–216. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; Tian, Q.; Wu, W.; Xiao, X. Shape-controlled iron oxide nanocrystals: Synthesis, magnetic properties and energy conversion applications. CrystEngComm 2016, 18, 6303–6326. [Google Scholar] [CrossRef]
- Wang, J.; Peng, Z.; Huang, Y.; Chen, Q. Growth of magnetite nanorods along its easy-magnetization axis of [110]. J. Cryst. Growth 2004, 263, 616–619. [Google Scholar] [CrossRef]
- Smit, J.; Wijn, H. Ferrites; Philips Technical Library: Eindhoven, The Netherlands, 1959; Volume 278. [Google Scholar]
- Koksharov, Y.A.; Dolzhenko, V.; Agazade, S. Electron magnetic resonance of synthetic goethite in the range of the magnetic transition. Phys. Solid State 2010, 52, 1929–1934. [Google Scholar] [CrossRef]
- Baghshahi, S.; Yousefi, F. A New Systematic Approach to the Morphology and Magnetic Properties of Spherical, Cubic, and Rod-like Magnetite Nanoparticles. J. Supercond. Nov. Magn. 2021, 34, 1949–1954. [Google Scholar] [CrossRef]
- Das, R.; Alonso, J.; Nemati Porshokouh, Z.; Kalappattil, V.; Torres, D.; Phan, M.-H.; Garaio, E.; García, J.Á.; Sanchez Llamazares, J.L.; Srikanth, H. Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J. Phys. Chem. C 2016, 120, 10086–10093. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Xie, Y.; Liu, W.; Zhang, B.; Wang, B.; Wang, L.; Liu, S.; Chen, B.; Mai, X.; Zang, F. Systematic intracellular biocompatibility assessments of superparamagnetic iron oxide nanoparticles in human umbilical cord mesenchyme stem cells in testifying its reusability for inner cell tracking by MRI. J. Biomed. Nanotechnol. 2019, 15, 2179–2192. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lin, W.; Chang, Q.; Li, W.; Lai, Y. Adsorptive characteristics of akaganeite and its environmental applications: A review. Environ. Technol. Rev. 2012, 1, 114–126. [Google Scholar] [CrossRef]
- Karami-Darehnaranji, M.; Taghizadeh, S.-M.; Mirzaei, E.; Berenjian, A.; Ebrahiminezhad, A. Size tuned synthesis of FeOOH nanorods toward self-assembled nanoarchitectonics. Langmuir 2020, 37, 115–123. [Google Scholar] [CrossRef]
- Morgan, B.; Lahav, O. The effect of pH on the kinetics of spontaneous Fe (II) oxidation by O2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere 2007, 68, 2080–2084. [Google Scholar] [CrossRef]
- Chen, C.; Thompson, A. Ferrous iron oxidation under varying pO2 levels: The effect of Fe (III)/Al (III) oxide minerals and organic matter. Environ. Sci. Technol. 2018, 52, 597–606. [Google Scholar] [CrossRef]
- Hosseini, F.; Sadjadi, M.S.; Farhadyar, N. Fe3O4 nanoparticles modified with APTES as the carrier for (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid (Naproxen) and (RS) 2-(3-benzoylphenyl)-propionic acid (Ketoprofen) drug. Orient. J. Chem. 2014, 30, 1609. [Google Scholar] [CrossRef] [Green Version]
- Giuntini, D.; Torresani, E.; Chan, K.T.; Blankenburg, M.; Saviot, L.; Bor, B.; Domenech, B.; Shachar, M.; Müller, M.; Olevsky, E.A. Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: Development of mechanically robust, bulk superparamagnetic materials. Nanoscale Adv. 2019, 1, 3139–3150. [Google Scholar] [CrossRef]
- Hadadian, Y.; Masoomi, H.; Dinari, A.; Ryu, C.; Hwang, S.; Kim, S.; Cho, B.k.; Lee, J.Y.; Yoon, J. From Low to High Saturation Magnetization in Magnetite Nanoparticles: The Crucial Role of the Molar Ratios Between the Chemicals. ACS Omega 2022, 7, 18, 15996–16012. [Google Scholar] [CrossRef]
- Si, J.-C.; Xing, Y.; Peng, M.-L.; Zhang, C.; Buske, N.; Chen, C.; Cui, Y.-L. Solvothermal synthesis of tunable iron oxide nanorods and their transfer from organic phase to water phase. CrystEngComm 2014, 16, 512–516. [Google Scholar] [CrossRef]
- Yan, L.; Bing, J.; Wu, H. The behavior of ozone on different iron oxides surface sites in water. Sci. Rep. 2019, 9, 14752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibaev, A.V.; Shvets, P.V.; Kessel, D.E.; Kamyshinsky, R.A.; Orekhov, A.S.; Abramchuk, S.S.; Khokhlov, A.R.; Philippova, O.E. Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH. Beilstein J. Nanotechnol. 2020, 11, 1230–1241. [Google Scholar] [CrossRef]
- Geng, S.; Yang, H.; Ren, X.; Liu, Y.; He, S.; Zhou, J.; Su, N.; Li, Y.; Xu, C.; Zhang, X. Anisotropic magnetite nanorods for enhanced magnetic hyperthermia. Chem.-Asian J. 2016, 11, 2996–3000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jia, S.; Wu, Q.; Ran, J.; Wu, S.; Liu, Y. Convenient synthesis of anisotropic Fe3O4 nanorods by reverse co-precipitation method with magnetic field-assisted. Mater. Lett. 2011, 65, 1973–1975. [Google Scholar] [CrossRef]
- Singh, H.; Bhagwat, S.; Jouen, S.; Lefez, B.; Athawale, A.A.; Hannoyer, B.; Ogale, S. Elucidation of the role of hexamine and other precursors in the formation of magnetite nanorods and their stoichiometry. Phys. Chem. Chem. Phys. 2010, 12, 3246–3253. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, L.; Wong, C.L.; Sun, L.; Shen, Z.; Madhavi, S. Controlled synthesis of α-FeOOH nanorods and their transformation to mesoporous α-Fe2O3, Fe3O4@C nanorods as anodes for lithium ion batteries. RSC Adv. 2013, 3, 15316–15326. [Google Scholar] [CrossRef]
- Mohapatra, J.; Mitra, A.; Tyagi, H.; Bahadur, D.; Aslam, M. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale 2015, 7, 9174–9184. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Cha, J.; Lee, J.-K. Synthesis of various magnetite nanoparticles through simple phase transformation and their shape-dependent magnetic properties. RSC Adv. 2013, 3, 8365–8371. [Google Scholar] [CrossRef]
Synthesis Time, h | Phase Composition, wt.% | ||
---|---|---|---|
Fe3O4 | β-FeOOH | α-FeOOH | |
3 | 0 | 100 | 0 |
6 | 35.8 | 0 | 64.2 |
9 | 46.7 | 0 | 53.3 |
12 | 47.4 | 0 | 52.6 |
18 | 6.1 | 0 | 93.9 |
24 | 1.9 | 0 | 98.1 |
Time, h | Fe 2p3/2 | Fe 2p1/2 | Fe/O |
---|---|---|---|
3 | 710.9 | 724.6 | 0.29 |
6 | 711.0 | 724.6 | 0.37 |
9 | 710.1 | 723.8 | 0.37 |
12 | 710.9 | 724.7 | 0.38 |
18 | 711.4 | 725.1 | 0.36 |
24 | 711.3 | 724.9 | 0.37 |
Fe3O4 [42] | α-FeOOH [41,43] | α-Fe2O3 [44] | |||
---|---|---|---|---|---|
d, Å | (hkℓ) | d, Å | (hkℓ) | d, Å | (hkℓ) |
4.81 | (111) | 4.97 | (020) | 3.7 | (012) |
2.96 | (220) | 2.58 | (021) | 2.7 | (104) |
2.52 | (311) | 4.20 | (110) | 2.52 | (110) |
2.41 | (222) | 2.58 | (101) | 2.1 | (202) |
2.09 | (400) | 2.45 | (111) | ||
1.71 | (422) | 2.25 | (121) | ||
1.61 | (511) | 1.71 | (212) | ||
1.28 | (533) | 2.52 | (040) |
Time, h | Ms a, emu/g | Mr b, emu/g | Hc c, Oe | Fe3O4 Content d, % |
---|---|---|---|---|
3 | 0.3 ± 0.01 | 0.006 | 0 | 0 |
6 | 30.79 ± 0.18 | 2.56 ± 0.05 | 75 ± 2.25 | 35.8 |
9 | 43.82 ± 0.06 | 2.63 ± 0.05 | 90 ± 2.70 | 46.7 |
12 | 46.83 ± 0.29 | 2.71 ± 0.05 | 103 ± 3.09 | 47.4 |
18 | 7.78 ± 0.21 | 0.87 ± 0.02 | 118 ± 3.54 | 6.1 |
24 | 1.78 ± 0.04 | 0.15 ± 0.01 | 120 ± 3.60 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernova, E.; Botvin, V.; Galstenkova, M.; Mukhortova, Y.; Wagner, D.; Gerasimov, E.; Surmeneva, M.; Kholkin, A.; Surmenev, R. A Comprehensive Study of Synthesis and Analysis of Anisotropic Iron Oxide and Oxyhydroxide Nanoparticles. Nanomaterials 2022, 12, 4321. https://doi.org/10.3390/nano12234321
Chernova E, Botvin V, Galstenkova M, Mukhortova Y, Wagner D, Gerasimov E, Surmeneva M, Kholkin A, Surmenev R. A Comprehensive Study of Synthesis and Analysis of Anisotropic Iron Oxide and Oxyhydroxide Nanoparticles. Nanomaterials. 2022; 12(23):4321. https://doi.org/10.3390/nano12234321
Chicago/Turabian StyleChernova, Elizaveta, Vladimir Botvin, Maria Galstenkova, Yulia Mukhortova, Dmitry Wagner, Evgeny Gerasimov, Maria Surmeneva, Andrei Kholkin, and Roman Surmenev. 2022. "A Comprehensive Study of Synthesis and Analysis of Anisotropic Iron Oxide and Oxyhydroxide Nanoparticles" Nanomaterials 12, no. 23: 4321. https://doi.org/10.3390/nano12234321
APA StyleChernova, E., Botvin, V., Galstenkova, M., Mukhortova, Y., Wagner, D., Gerasimov, E., Surmeneva, M., Kholkin, A., & Surmenev, R. (2022). A Comprehensive Study of Synthesis and Analysis of Anisotropic Iron Oxide and Oxyhydroxide Nanoparticles. Nanomaterials, 12(23), 4321. https://doi.org/10.3390/nano12234321