Rheological, Thermal and Mechanical Characterization of Toughened Self-Healing Supramolecular Resins, Based on Hydrogen Bonding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Choice of Self-Healing Molecules/Compounds
2.1.2. Choice and Preparation of the EP Matrix
2.1.3. Development of the Self-Healing Multifunctional Material
2.2. Methods
2.2.1. Thermal Investigation
2.2.2. Dynamic Mechanical Analysis (DMA)
2.2.3. Self-Healing Efficiency Evaluation
3. Results and Discussion
3.1. Rheological Investigation
3.1.1. EP Epoxy Mixture
3.1.2. EP Epoxy Mixture Loaded with 1% wt. of the Healing Molecule
3.1.3. EP Epoxy Mixture Loaded with 0.5% wt. of CNT
3.1.4. EP Epoxy Mixture Loaded with 1% wt. of the Healing Molecule and 0.5% wt. of CNT
3.1.5. EP Epoxy Mixture Loaded with 1% wt. of the DBA Healing Molecule and 0.1, 0.3, 0.5 and 1.0% wt. of CNT
3.2. Thermal Analyses: Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)
3.3. Dynamic Mechanical Analysis (DMA)
3.4. Self-Healing Efficiency Evaluation Test
3.5. Electrical Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gagné, M.; Therriault, D. Lightning strike protection of composites. Prog. Aerosp. Sci. 2014, 64, 1–16. [Google Scholar] [CrossRef]
- Raimondo, M.; Guadagno, L.; Speranza, V.; Bonnaud, L.; Dubois, P.; Lafdi, K. Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection. Compos. B Eng. 2018, 140, 44–56. [Google Scholar] [CrossRef]
- Alemour, B.; Badran, O.; Hassan, M.R. A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation. J. Aerosp. Technol. Manag. 2019, 11, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Farcas, C.; Galao, O.; Vertuccio, L.; Guadagno, L.; Romero-Sánchez, M.D.; Rodríguez-Pastor, I.; Garcés, P. Ice-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effect. Nanomaterials 2021, 11, 2427. [Google Scholar] [CrossRef] [PubMed]
- Guadagno, L.; Foglia, F.; Pantani, R.; Romero-Sanchez, M.D.; Calderón, B.; Vertuccio, L. Low-voltage icing protection film for automotive and aeronautical industries. Nanomaterials 2020, 10, 1343. [Google Scholar] [CrossRef]
- Guadagno, L.; Vertuccio, L.; Foglia, F.; Raimondo, M.; Barra, G.; Sorrentino, A.; Pantani, R.; Calabrese, E. Flexible eco-friendly multilayer film heaters. Compos. B Eng. 2021, 224, 109208. [Google Scholar] [CrossRef]
- Vertuccio, L.; Foglia, F.; Pantani, R.; Romero-Sánchez, M.; Calderón, B.; Guadagno, L. Carbon nanotubes and expanded graphite based bulk nanocomposites for de-icing applications. Compos. B Eng. 2021, 207, 108583. [Google Scholar] [CrossRef]
- Aly, K.; Li, A.; Bradford, P.D. In-situ monitoring of woven glass fiber reinforced composites under flexural loading through embedded aligned carbon nanotube sheets. J. Compos. Mater. 2018, 52, 2777–2788. [Google Scholar] [CrossRef]
- Slobodian, P.; Pertegás, S.L.; Riha, P.; Matyas, J.; Olejnik, R.; Schledjewski, R.; Kovar, M. Glass fiber/epoxy composites with integrated layer of carbon nanotubes for deformation detection. Compos. Sci. Technol. 2018, 156, 61–69. [Google Scholar] [CrossRef]
- Vertuccio, L.; Guadagno, L.; Spinelli, G.; Russo, S.; Iannuzzo, G. Effect of carbon nanotube and functionalized liquid rubber on mechanical and electrical properties of epoxy adhesives for aircraft structures. Compos. B Eng. 2017, 129, 1–10. [Google Scholar] [CrossRef]
- Vertuccio, L.; Russo, S.; Raimondo, M.; Lafdi, K.; Guadagno, L. Influence of carbon nanofillers on the curing kinetics of epoxy-amine resin. RSC Adv. 2015, 5, 90437–90450. [Google Scholar] [CrossRef]
- Awaja, F.; Zhang, S.; Tripathi, M.; Nikiforov, A.; Pugno, N. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog. Mater. Sci. 2016, 83, 536–573. [Google Scholar] [CrossRef]
- Cao, L.; Yuan, D.; Xu, C.; Chen, Y. Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale 2017, 9, 15696–15706. [Google Scholar] [CrossRef]
- Montero de Espinosa, L.; Meesorn, W.; Moatsou, D.; Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 2017, 117, 12851–12892. [Google Scholar] [CrossRef] [Green Version]
- Nie, J.; Huang, J.; Fan, J.; Cao, L.; Xu, C.; Chen, Y. Strengthened, self-healing, and conductive ENR-based composites based on multiple hydrogen bonding interactions. ACS Sustain. Chem. Eng. 2020, 8, 13724–13733. [Google Scholar] [CrossRef]
- Thakur, V.K.; Kessler, M.R. Self-healing polymer nanocomposite materials: A review. Polymer 2015, 69, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Utrera-Barrios, S.; Araujo-Morera, J.; de Los Reyes, L.P.; Manzanares, R.V.; Verdejo, R.; López-Manchado, M.Á.; Santana, M.H. An effective and sustainable approach for achieving self-healing in nitrile rubber. Eur. Polym. J. 2020, 139, 110032. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.A.; Santana, M.H. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review. Mater. Horiz. 2020, 7, 2882–2902. [Google Scholar] [CrossRef]
- Wemyss, A.M.; Bowen, C.; Plesse, C.; Vancaeyzeele, C.; Nguyen, G.T.; Vidal, F.; Wan, C. Dynamic crosslinked rubbers for a green future: A material perspective. Mater. Sci. Eng. R Rep. 2020, 141, 100561. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, J.; Gan, L.; Long, M. Research progress in bio-based self-healing materials. Eur. Polym. J. 2020, 129, 109651. [Google Scholar] [CrossRef]
- Chen, Y.; Guan, Z. Self-assembly of core–shell nanoparticles for self-healing materials. Polym. Chem. 2013, 4, 4885–4889. [Google Scholar] [CrossRef]
- Lee, J.Y.; Buxton, G.A.; Balazs, A.C. Using nanoparticles to create self-healing composites. J. Chem. Phys. 2004, 121, 5531–5540. [Google Scholar] [CrossRef]
- Yang, Y.; He, J.; Li, Q.; Gao, L.; Hu, J.; Zeng, R.; Qin, J.; Wang, S.X.; Wang, Q. Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nat. Nanotechnol. 2019, 14, 151–155. [Google Scholar] [CrossRef]
- Guadagno, L.; Vertuccio, L.; Naddeo, C.; Calabrese, E.; Barra, G.; Raimondo, M.; Sorrentino, A.; Binder, W.; Michael, P.; Rana, S. Self-healing epoxy nanocomposites via reversible hydrogen bonding. Compos. B Eng. 2019, 157, 1–13. [Google Scholar] [CrossRef]
- Guadagno, L.; Vertuccio, L.; Naddeo, C.; Calabrese, E.; Barra, G.; Raimondo, M.; Sorrentino, A.; Binder, W.H.; Michael, P.; Rana, S. Reversible self-healing carbon-based nanocomposites for structural applications. Polymers 2019, 11, 903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guadagno, L.; Vertuccio, L.; Barra, G.; Naddeo, C.; Sorrentino, A.; Lavorgna, M.; Raimondo, M.; Calabrese, E. Eco-friendly polymer nanocomposites designed for self-healing applications. Polymer 2021, 223, 123718. [Google Scholar] [CrossRef]
- Raimondo, M.; Calabrese, E.; Binder, W.H.; Michael, P.; Rana, S.; Guadagno, L. Tunneling atomic force microscopy analysis of supramolecular self-responsive nanocomposites. Polymers 2021, 13, 1401. [Google Scholar] [CrossRef]
- Falzon, B.G.; Robinson, P.; Frenz, S.; Gilbert, B. Development and evaluation of a novel integrated anti-icing/de-icing technology for carbon fibre composite aerostructures using an electro-conductive textile. Compos. Part A Appl. Sci. Manuf. 2015, 68, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Goraj, Z. An Overview of the Deicing and Anti-Icing Technologies with Prospects for the Future. In Proceedings of the 24th International Congress of the Aeronautical Sciences, Yokohama, Japan, 29 August–3 September 2004. [Google Scholar]
- Park, M.S. Aircraft De-Icing System Using Thermal Conductive Fibers. Master’s Thesis, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, March 2015. Available online: https://commons.erau.edu/edt/276 (accessed on 1 November 2022).
- Spinelli, G.; Lamberti, P.; Tucci, V.; Guadagno, L.; Vertuccio, L. Damage monitoring of structural resins loaded with carbon fillers: Experimental and theoretical study. Nanomaterials 2020, 10, 434. [Google Scholar] [CrossRef] [Green Version]
- Strehlow, R.H.; Moser, R. Capitalizing on the Increased Flexibility that Comes from High Power Density Electrothermal Deicing; SAE Technical Paper: Warrendale, PA, USA, 2009. [Google Scholar]
- Vertuccio, L.; Guadagno, L.; Spinelli, G.; Lamberti, P.; Zarrelli, M.; Russo, S.; Iannuzzo, G. Smart coatings of epoxy based CNTs designed to meet practical expectations in aeronautics. Compos. B Eng. 2018, 147, 42–46. [Google Scholar] [CrossRef]
- Guadagno, L.; Naddeo, C.; Raimondo, M.; Barra, G.; Vertuccio, L.; Russo, S.; Lafdi, K.; Tucci, V.; Spinelli, G.; Lamberti, P. Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials. Nanotechnology 2017, 28, 094001. [Google Scholar] [CrossRef] [PubMed]
- Mostovoy, S. Use of crack-line-loaded specimens for measuring plane-strain fracture toughness. J. Mater. 1967, 2, 661–681. [Google Scholar]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef]
- Wool, R.; O’Connor, K. A theory crack healing in polymers. J. Appl. Phys. 1981, 52, 5953–5963. [Google Scholar] [CrossRef]
- Guadagno, L.; Raimondo, M.; Naddeo, C.; Longo, P.; Mariconda, A.; Binder, W.H. Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart. Mater. Struct. 2014, 23, 045001. [Google Scholar] [CrossRef]
- Longo, P.; Mariconda, A.; Calabrese, E.; Raimondo, M.; Naddeo, C.; Vertuccio, L.; Russo, S.; Iannuzzo, G.; Guadagno, L. Development of a new stable ruthenium initiator suitably designed for self-repairing applications in high reactive environments. J. Ind. Eng. Chem. 2017, 54, 234–251. [Google Scholar] [CrossRef]
- Guadagno, L.; Vertuccio, L.; Naddeo, C.; Raimondo, M.; Barra, G.; De Nicola, F.; Volponi, R.; Lamberti, P.; Spinelli, G.; Tucci, V. Electrical current map and bulk conductivity of carbon fiber-reinforced nanocomposites. Polymers 2019, 11, 1865. [Google Scholar] [CrossRef] [Green Version]
- Guadagno, L.; Vietri, U.; Raimondo, M.; Vertuccio, L.; Barra, G.; De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V.; De Nicola, F. Correlation between electrical conductivity and manufacturing processes of nanofilled carbon fiber reinforced composites. Compos. B Eng. 2015, 80, 7–14. [Google Scholar] [CrossRef]
- Guadagno, L.; Raimondo, M.; Vertuccio, L.; Naddeo, C.; Barra, G.; Longo, P.; Lamberti, P.; Spinelli, G.; Nobile, M. Morphological, rheological and electrical properties of composites filled with carbon nanotubes functionalized with 1-pyrenebutyric acid. Compos. B Eng. 2018, 147, 12–21. [Google Scholar] [CrossRef]
- Guadagno, L.; Lamberti, P.; Tucci, V.; Vertuccio, L. Self-sensing nanocomposites for structural applications: Choice criteria. Nanomaterials 2021, 11, 833. [Google Scholar] [CrossRef] [PubMed]
- Guadagno, L.; Vertuccio, L. Resistive response of carbon nanotube-based composites subjected to water aging. Nanomaterials 2021, 11, 2183. [Google Scholar] [CrossRef] [PubMed]
Sample | CNT (%) | Healing Molecule (%) |
---|---|---|
EP | 0 | 0 |
EP-DBA | 0 | 1 |
EP-T | 0 | 1 |
EP-M | 0 | 1 |
EP-0.5CNT | 0.5 | 0 |
EP-0.5CNT-DBA | 0.5 | 1 |
EP-0.5CNT-T | 0.5 | 1 |
EP-0.5CNT-M | 0.5 | 1 |
EP-0.1CNT-DBA | 0.1 | 1 |
EP-0.3CNT-DBA | 0.3 | 1 |
EP-1.0CNT-DBA | 1.0 | 1 |
Sample | Cure Degree DC [%] | ΔHRes [Jg−1] | ΔHT [Jg−1] |
---|---|---|---|
EP | 97 | 8.16 | 283.42 |
EP-0.5CNT | 89 | 48.48 | 429.32 |
EP-0.5CNT-DBA | 92 | 30.10 | 354.80 |
EP-0.5CNT-T | 92 | 27.22 | 348.32 |
EP-0.5CNT-M | 86 | 54.27 | 392.17 |
Sample | Pcvirgin [N] | PChealed [N] | Healing Efficiency (η) [%] |
---|---|---|---|
EP-0.5CNT | 525 | 79.0 | 15.0 |
EP-DBA | 475 | 57.0 | 12.0 |
EP-T | 415 | 79.0 | 19.0 |
EP-M | 349 | 19.6 | 5.50 |
EP-0.5CNT-DBA | 201 | 163 | 81.1 |
EP-0.5CNT-2T | 244 | 160 | 65.6 |
EP-0.5CNT-M | 180 | 178 | 98.9 |
Sample | Electrical Conductivity [S/m] |
---|---|
EP | 1.16 × 10−14 |
EP-0.5CNT | 2.56 × 10−2 |
EP-0.5CNT-DBA | 1.15 × 10−2 |
EP-0.5CNT-T | 2.27 × 10−4 |
EP-0.5CNT-M | 1.29 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guadagno, L.; Raimondo, M.; Naddeo, C.; Vertuccio, L.; Russo, S.; Iannuzzo, G.; Calabrese, E. Rheological, Thermal and Mechanical Characterization of Toughened Self-Healing Supramolecular Resins, Based on Hydrogen Bonding. Nanomaterials 2022, 12, 4322. https://doi.org/10.3390/nano12234322
Guadagno L, Raimondo M, Naddeo C, Vertuccio L, Russo S, Iannuzzo G, Calabrese E. Rheological, Thermal and Mechanical Characterization of Toughened Self-Healing Supramolecular Resins, Based on Hydrogen Bonding. Nanomaterials. 2022; 12(23):4322. https://doi.org/10.3390/nano12234322
Chicago/Turabian StyleGuadagno, Liberata, Marialuigia Raimondo, Carlo Naddeo, Luigi Vertuccio, Salvatore Russo, Generoso Iannuzzo, and Elisa Calabrese. 2022. "Rheological, Thermal and Mechanical Characterization of Toughened Self-Healing Supramolecular Resins, Based on Hydrogen Bonding" Nanomaterials 12, no. 23: 4322. https://doi.org/10.3390/nano12234322
APA StyleGuadagno, L., Raimondo, M., Naddeo, C., Vertuccio, L., Russo, S., Iannuzzo, G., & Calabrese, E. (2022). Rheological, Thermal and Mechanical Characterization of Toughened Self-Healing Supramolecular Resins, Based on Hydrogen Bonding. Nanomaterials, 12(23), 4322. https://doi.org/10.3390/nano12234322