Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells
Abstract
:1. Introduction
2. Device Performance and Stability of SnO2 ETL-Based PSCs
2.1. Elemental Doping
2.2. Metal Oxide
2.3. Ionic Compounds
2.3.1. Surface Modification by Ionic Compounds
2.3.2. Bulk Incorporation of Ionic Compounds
2.4. Carbon Materials
2.4.1. Surface Modification by Carbon Materials
2.4.2. Bulk Incorporation of Carbon Materials
2.5. Organic Molecules
2.5.1. Surface Modification by Organic Molecules
2.5.2. Bulk Incorporation of Organic Molecules
3. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- NREL, E.C. Available online: http://www.nrel.gov/pv/ (accessed on 12 November 2022).
- Hwang, T.; Lee, B.; Kim, J.; Lee, S.; Gil, B.; Yun, A.J.; Park, B. From Nanostructural Evolution to Dynamic Interplay of Constituents: Perspectives for Perovskite Solar Cells. Adv. Mater. 2018, 30, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Yip, H.L.; Jen, A.K.Y. Recent Advances in Solution-Processed Interfacial Materials for Efficient and Stable Polymer Solar Cells. Energy Environ. Sci. 2012, 5, 5994–6011. [Google Scholar] [CrossRef]
- Nakamura, T.; Yakumaru, S.; Truong, M.A.; Kim, K.; Liu, J.; Hu, S.; Otsuka, K.; Hashimoto, R.; Murdey, R.; Sasamori, T.; et al. Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution. Nat. Commun. 2020, 11, 3008. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced Electron Extraction using SnO2 for High-Efficiency Planar-Structure HC(NH2)2 PbI3-Based Perovskite Solar Cells. Nat. Energy 2016, 2, 16177. [Google Scholar] [CrossRef]
- Chakravarthi, N.; Park, H.-Y.; Kranthiraja, K.; Kim, H.; Shin, J.; Song, M.; Jin, S.-H. Substituent position engineering of phosphine oxide functionalized triazine-based cathode interfacial materials for flexible organic and perovskite solar cells. Org. Electron. 2018, 54, 54–63. [Google Scholar] [CrossRef]
- Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G. 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. J. Phys. Chem. C 2014, 118, 16567–16573. [Google Scholar] [CrossRef]
- Wang, K.; Shi, Y.; Dong, Q.; Li, Y.; Wang, S.; Yu, X.; Wu, M.; Ma, T. Low-Temperature and Solution-Processed Amorphous WOX as Electron-Selective Layer for Perovskite Solar Cells. J. Phys. Chem. Lett. 2015, 6, 755–759. [Google Scholar] [CrossRef]
- Qin, M.; Ma, J.; Ke, W.; Qin, P.; Lei, H.; Tao, H.; Zheng, X.; Xiong, L.; Liu, Q.; Chen, Z.; et al. Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layers. ACS Appl. Mater. Interfaces 2016, 8, 8460–8466. [Google Scholar] [CrossRef]
- Kogo, A.; Numata, Y.; Ikegami, M.; Miyasaka, T. Nb2O5 Blocking Layer for High Open-circuitVoltage Perovskite Solar Cells. Chem. Lett. 2015, 44, 829–830. [Google Scholar] [CrossRef]
- Wang, X.; Deng, L.-L.; Wang, L.-Y.; Dai, S.-M.; Xing, Z.; Zhan, X.-X.; Lu, X.-Z.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. J. Mater. Chem. A 2016, 5, 1706–1712. [Google Scholar] [CrossRef]
- Yeom, E.J.; Shin, S.S.; Yang, W.S.; Lee, S.J.; Yin, W.; Kim, D.; Noh, J.H.; Ahn, T.K.; Seok, S.I. Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells. J. Mater. Chem. A 2016, 5, 79–86. [Google Scholar] [CrossRef]
- Shin, S.S.; Yeom, E.J.; Yang, W.S.; Hur, S.; Kim, M.G.; Im, J.; Seo, J.; Noh, J.H.; Seok, S.I. Colloidally Prepared La-Doped BaSnO3 Electrodes for Efficient, Photostable Perovskite Solar Cells. Science 2017, 356, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Bera, A.; Wu, K.; Sheikh, A.; Alarousu, E.; Mohammed, O.F.; Wu, T. Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 28494–28501. [Google Scholar] [CrossRef]
- Dunlap-Shohl, W.A.; Younts, R.; Gautam, B.; Gundogdu, K.; Mitzi, D.B. Effects of Cd Diffusion and Doping in High-Performance Perovskite Solar Cells Using CdS as Electron Transport Layer. J. Phys. Chem. C 2016, 120, 16437–16445. [Google Scholar] [CrossRef]
- Yun, A.J.; Kim, J.; Hwang, T.; Park, B. Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO2 Electron Transport Layer. ACS Appl. Energy Mater. 2019, 2, 3554–35600. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, Y.; Wen, J.; Liu, H.; Yang, G.; Qin, P.; Fang, G. Review on the Application of SnO2 in Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1802757. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Xu, H.; Zheng, H.; Zhang, T.; Zhang, P.; Wang, F.; Wu, J.; Wang, Z.; Chen, Z.; et al. SnO2-Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Sol. RRL 2019, 3, 1800292. [Google Scholar] [CrossRef]
- Deng, K.; Chen, Q.; Li, L. Modification Engineering in SnO 2 Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. Adv. Funct. Mater. 2020, 30, 2004209. [Google Scholar] [CrossRef]
- Huang, S.; Li, P.; Wang, J.; Huang, J.C.-C.; Xue, Q.; Fu, N. Modification of SnO2 electron transport Layer: Brilliant strategies to make perovskite solar cells stronger. Chem. Eng. J. 2022, 439, 135687. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, X.; You, J. SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells. Small 2018, 14, e1801154. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Li, C.; Lu, H.; Weng, Z.; Pan, Y.; Chen, W.; Hang, X.-C.; Sun, Z.; Zhan, Y. Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells. Appl. Phys. Lett. 2019, 115, 143903. [Google Scholar] [CrossRef]
- Gong, X.; Sun, Q.; Liu, S.; Liao, P.; Shen, Y.; Graetzel, C.; Zakeeruddin, S.M.; Grätzel, M.; Wang, M. Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials. Nano Lett. 2018, 18, 3969–3977. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, J.Y.; Son, H.J.; Lee, C.H.; Jang, S.S.; Ko, M.J. Low-Temperature Solution-Processed Li-doped SnO2 as an Effective Electron Transporting Layer for High-Performance Flexible and Wearable Perovskite Solar Cells. Nano Energy 2016, 26, 208–215. [Google Scholar] [CrossRef]
- Ren, X.; Yang, D.; Yang, Z.; Feng, J.; Zhu, X.; Niu, J.; Liu, Y.; Zhao, W.; Liu, S.F. Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 2421–2429. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Lei, H.; Tao, H.; Zheng, X.; Ma, J.; Liu, Q.; Ke, W.; Chen, Z.; Xiong, L.; Qin, P.; et al. Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Low-Temperature Processed Y-Doped SnO2 Nanosheets as Electron Selective Layers. Small 2017, 13, 1601769. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Fang, Y.; Deng, Y.; Wang, Q.; Zhao, J.; Zheng, X.; Zhang, Y.; Huang, J. Low Temperature Solution-Processed Sb:SnO2 Nanocrystals for Efficient Planar Perovskite Solar Cells. ChemSusChem 2016, 9, 2686–2691. [Google Scholar] [CrossRef] [Green Version]
- Roose, B.; Johansen, C.M.; Dupraz, K.; Jaouen, T.; Aebi, P.; Steiner, U.; Abate, A. A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells. J. Mater. Chem. A 2017, 6, 1850–1857. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Qin, M.; Yang, G.; Guo, Y.; Lei, H.; Liu, Q.; Ke, W.; Tao, H.; Qin, P.; Li, S.; et al. Performance enhancement of high temperature SnO2-based planar perovskite solar cells: Electrical characterization and understanding of the mechanism. J. Mater. Chem. A 2016, 4, 8374–8383. [Google Scholar] [CrossRef]
- Chen, H.; Liu, D.; Wang, Y.; Wang, C.; Zhang, T.; Zhang, P.; Sarvari, H.; Chen, Z.; Li, S. Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers. Nanoscale Res. Lett. 2017, 12, 238. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Li, R.; Chen, B.; Hou, F.; Zhang, J.; Zhao, Y.; Zhang, X. Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23%. Adv. Mater. 2020, 32, e1905766. [Google Scholar] [CrossRef]
- Chen, X.; Xu, W.; Shi, Z.; Pan, G.; Zhu, J.; Hu, J.; Li, X.; Shan, C.; Song, H. Europium ions doped WOx nanorods for dual interfacial modification facilitating high efficiency and stability of perovskite solar cells. Nano Energy 2020, 80, 105564. [Google Scholar] [CrossRef]
- Song, S.; Kang, G.; Pyeon, L.; Lim, C.; Lee, G.-Y.; Park, T.; Choi, J. Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%). ACS Energy Lett. 2017, 2, 2667–2673. [Google Scholar] [CrossRef]
- Lee, Y.; Paek, S.; Cho, K.T.; Oveisi, E.; Gao, P.; Lee, S.; Park, J.S.; Zhang, Y.; Humphry-Baker, R.; Asiri, A.M.; et al. Enhanced Charge Collection with Passivation of the Tin Oxide layer in Planar Perovskite Solar Cells. J. Mater. Chem. A 2017, 5, 12729–12734. [Google Scholar] [CrossRef]
- Dagar, J.; Castro-Hermosa, S.; Lucarelli, G.; Cacialli, F.; Brown, T.M. Highly Efficient Perovskite Solar Cells for Light Harvesting under Indoor Illumination via Solution Processed SnO2/MgO Composite Electron Transport Layers. Nano Energy 2018, 49, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Bi, Z.; Zhang, S.; Thandapani, M.; Zhu, Y.; Zheng, Y.; Liem, N.Q.; Xiao, X.; Xu, G.; Guerrero, A.; Xu, X. High Shunt Resistance SnO2-PbO Electron Transport Layer for Perovskite Solar Cells Used in Low Lighting Applications. Adv. Sustain. Syst. 2021, 5, 2100120. [Google Scholar] [CrossRef]
- Ma, J.; Yang, G.; Qin, M.; Zheng, X.; Lei, H.; Chen, C.; Chen, Z.; Guo, Y.; Han, H.; Zhao, X.; et al. MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells. Adv. Sci. 2017, 4, 1700031. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Chen, X.; Yang, S.; Li, C.; Zhao, H.; Yang, H.G. A Band-Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in High-Performance Perovskite Solar Cells. Adv. Funct. Mater. 2017, 27, 1700878. [Google Scholar] [CrossRef]
- Yan, L.; Xue, Q.; Liu, M.; Zhu, Z.; Tian, J.; Li, Z.; Chen, Z.; Chen, Z.; Yan, H.; Yip, H.-L.; et al. Interface Engineering for All-Inorganic CsPbI2 Br Perovskite Solar Cells with Efficiency over 14%. Adv. Mater. 2018, 30, e1802509. [Google Scholar] [CrossRef]
- Zhuang, J.; Mao, P.; Luan, Y.; Chen, N.; Cao, X.; Niu, G.; Jia, F.; Wang, F.; Cao, S.; Wang, J. Rubidium Fluoride Modified SnO2 for Planar n-i-p Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2010385. [Google Scholar] [CrossRef]
- Chen, Q.; Peng, C.; Du, L.; Hou, T.; Yu, W.; Chen, D.; Shu, H.; Huang, D.; Zhou, X.; Zhang, J.; et al. Synergy of mesoporous SnO2 and RbF modification for high-efficiency and stable perovskite solar cells. J. Energy Chem. 2021, 66, 250–259. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Kim, S.; Park, N. Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells. Adv. Mater. 2019, 31, 1902902. [Google Scholar] [CrossRef] [PubMed]
- Bu, T.; Li, J.; Zheng, F.; Chen, W.; Wen, X.; Ku, Z.; Peng, Y.; Zhong, J.; Cheng, Y.-B.; Huang, F. Universal Passivation Strategy to Slot-Die Printed SnO2 for Hysteresis-Free Efficient Flexible Perovskite Solar Module. Nat. Commun. 2018, 9, 4609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Rui, Y.; Wang, X.; Shi, J.; Wang, Y.; Yang, J.; Zhang, Q. Grain Size and Interface Modification via Cesium Carbonate Post-Treatment for Efficient SnO2-Based Planar Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 7002–7011. [Google Scholar] [CrossRef]
- Huang, Y.; Li, S.; Wu, C.; Wang, S.; Wang, C.; Ma, R. Interfacial modification of various alkali metal cations in perovskite solar cells and their influence on photovoltaic performance. New J. Chem. 2020, 44, 8902–8909. [Google Scholar] [CrossRef]
- Wang, P.; Chen, B.; Li, R.; Wang, S.; Ren, N.; Li, Y.; Mazumdar, S.; Shi, B.; Zhao, Y.; Zhang, X. Cobalt Chloride Hexahydrate Assisted in Reducing Energy Loss in Perovskite Solar Cells with Record Open-Circuit Voltage of 1.20 V. ACS Energy Lett. 2021, 6, 2121–2128. [Google Scholar] [CrossRef]
- You, S.; Zeng, H.; Ku, Z.; Wang, X.; Wang, Z.; Rong, Y.; Zhao, Y.; Zheng, X.; Luo, L.; Li, L.; et al. Multifunctional Polymer-Regulated SnO 2 Nanocrystals Enhance Interface Contact for Efficient and Stable Planar Perovskite Solar Cells. Adv. Mater. 2020, 32, 2003990. [Google Scholar] [CrossRef]
- Zhu, P.; Gu, S.; Luo, X.; Gao, Y.; Li, S.; Zhu, J.; Tan, H. Simultaneous Contact and Grain-Boundary Passivation in Planar Perovskite Solar Cells Using SnO 2 -KCl Composite Electron Transport Layer. Adv. Energy Mater. 2019, 10, 1903083. [Google Scholar] [CrossRef]
- Bi, H.; Zuo, X.; Liu, B.; He, D.; Bai, L.; Wang, W.; Li, X.; Xiao, Z.; Sun, K.; Song, Q.; et al. Multifunctional Organic Ammonium Salt-Modified SnO2 Nanoparticles toward Efficient and Stable Planar Perovskite Solar Cells. J. Mater. Chem. A 2021, 9, 3940. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, K.; Hu, J.; Li, L. Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability. Angew. Chem. 2019, 131, 11621–11628. [Google Scholar]
- Sun, Y.; Pang, Z.; Quan, Y.; Han, D.; Zhang, X.; Ge, X.; Wang, F.; Sun, Y.; Yang, J.; Yang, L. A Synchronous Defect Passivation Strategy for Constructing High-Performance and Stable Planar Perovskite Solar Cells. Chem. Eng. J. 2021, 413, 127387. [Google Scholar] [CrossRef]
- Jiang, E.; Ai, Y.; Yan, J.; Li, N.; Lin, L.; Wang, Z.; Shou, C.; Yan, B.; Zeng, Y.; Sheng, J.; et al. Phosphate-Passivated SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 36727–36734. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Lin, P.; Fu, N.; Sun, K.; Ye, M.; Liu, C.; Zhou, X.; Shu, L.; Hao, X.; Xu, B.; et al. Ionic liquid modified SnO2 nanocrystals as a robust electron transporting layer for efficient planar perovskite solar cells. J. Mater. Chem. A 2018, 6, 22086–22095. [Google Scholar] [CrossRef]
- Akin, S. Boosting the efficiency and stability of perovskite solar cells through facile molecular engineering approaches. Sol. Energy 2020, 199, 136–142. [Google Scholar] [CrossRef]
- Ai, Y.; Liu, W.; Shou, C.; Yan, J.; Li, N.; Yang, Z.; Song, W.; Yan, B.; Sheng, J.; Ye, J. SnO2 surface defects tuned by (NH4)2S for high-efficiency perovskite solar cells. Sol. Energy 2019, 194, 541–547. [Google Scholar] [CrossRef]
- Wang, H.; Li, F.; Wang, P.; Sun, R.; Ma, W.; Chen, M.; Miao, W.; Liu, D.; Wang, T. Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency. Adv. Energy Mater. 2020, 10, 2000615. [Google Scholar] [CrossRef]
- Wu, J.; Cui, Y.; Yu, B.; Liu, K.; Li, Y.; Li, H.; Shi, J.; Wu, H.; Luo, Y.; Li, D.; et al. A Simple Way to Simultaneously Release the Interface Stress and Realize the Inner Encapsulation for Highly Efficient and Stable Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1905336. [Google Scholar] [CrossRef]
- Xie, J.; Huang, K.; Yu, X.; Yang, Z.; Xiao, K.; Qiang, Y.; Zhu, X.; Xu, L.; Wang, P.; Cui, C.; et al. Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. ACS Nano 2017, 11, 9176–9182. [Google Scholar] [CrossRef]
- Zheng, X.; Lei, H.; Yang, G.; Ke, W.; Chen, Z.; Chen, C.; Ma, J.; Guo, Q.; Yao, F.; Zhang, Q.; et al. Enhancing efficiency and stability of perovskite solar cells via a high mobility p-type PbS buffer layer. Nano Energy 2017, 38, 1–11. [Google Scholar] [CrossRef]
- Ke, W.; Zhao, D.; Xiao, C.; Wang, C.; Cimaroli, A.J.; Grice, C.R.; Yang, M.; Li, Z.; Jiang, C.-S.; Al-Jassim, M.; et al. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 14276–14283. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, D.; Grice, C.R.; Liao, W.; Yu, Y.; Cimaroli, A.; Shrestha, N.; Roland, P.J.; Chen, J.; Yu, Z.; et al. Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 12080–12087. [Google Scholar] [CrossRef]
- Wang, J.; Datta, K.; Weijtens, C.H.L.; Wienk, M.M.; Janssen, R.A.J. Insights into Fullerene Passivation of SnO 2 Electron Transport Layers in Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1905883. [Google Scholar] [CrossRef]
- Li, Z.; Gao, Y.; Zhang, Z.; Xiong, Q.; Deng, L.; Li, X.; Zhou, Q.; Fang, Y.; Gao, P. cPCN-Regulated SnO2 Composites Enables Perovskite Solar Cell with Efficiency Beyond 23%. Nano-Micro Lett. 2021, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Tian, C.; Gao, J.; Fan, F.; Zhang, Y.; Mi, Y.; Ouyang, X.; Li, L.; Li, J.; Chen, S.; et al. Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells. Nano Energy 2021, 89, 106455. [Google Scholar] [CrossRef]
- Hui, W.; Yang, Y.; Xu, Q.; Gu, H.; Feng, S.; Su, Z.; Zhang, M.; Wang, J.; Li, X.; Fang, J.; et al. Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2020, 32, 1906374. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Wang, J.; Li, X.; Liu, W.; Xia, T.; Yao, D.; Zhang, L.; Zuo, C.; Ding, L.; Long, F. Modifying SnO2 with Polyacrylamide to Enhance the Performance of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 34143–34150. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Dong, H.; Zhang, L.; Li, J.; Jia, F.; Jiao, B.; Xu, J.; Hou, X.; Liu, J.; Wu, Z. Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with PCEs exceeding 22%. J. Mater. Chem. A 2020, 8, 2644–2653. [Google Scholar] [CrossRef]
- Zhang, S.; Si, H.; Fan, W.; Shi, M.; Li, M.; Xu, C.; Zhang, Z.; Liao, Q.; Sattar, A.; Kang, Z.; et al. Graphdiyne: Bridging SnO2 and Perovskite in Planar Solar Cells. Angew. Chem. 2020, 132, 11670–11679. [Google Scholar] [CrossRef]
- Zhao, X.; Tao, L.; Li, H.; Huang, W.; Sun, P.; Liu, J.; Liu, S.; Sun, Q.; Cui, Z.; Sun, L.; et al. Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene. Nano Lett. 2018, 18, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhu, Y.; Liu, B.; Wang, C.; Ma, R. Introduction of carbon nanodots into SnO2 electron transport layer for efficient and UV stable planar perovskite solar cells. J. Mater. Chem. A 2019, 7, 5353–5362. [Google Scholar] [CrossRef]
- Lou, Q.; Han, Y.; Liu, C.; Zheng, K.; Zhang, J.; Chen, X.; Du, Q.; Chen, C.; Ge, Z. π-Conjugated Small Molecules Modified SnO2 Layer for Perovskite Solar Cells with over 23% Efficiency. Adv. Energy Mater. 2021, 11, 2101416. [Google Scholar] [CrossRef]
- Dai, Z.; Yadavalli, S.K.; Chen, M.; Abbaspourtamijani, A.; Qi, Y.; Padture, N.P. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 2021, 372, 618–622. [Google Scholar] [CrossRef]
- Tu, B.; Shao, Y.; Chen, W.; Wu, Y.; Li, X.; He, Y.; Li, J.; Liu, F.; Zhang, Z.; Lin, Y.; et al. Novel Molecular Doping Mechanism for n-Doping of SnO2 via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells. Adv. Mater. 2019, 31, 1805944. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, H. Reduced Energy Loss Enabled by Thiophene-Based Interlayers for High Performance and Stable Perovskite Solar Cells. J. Mater. Chem. A 2021, 9, 4138. [Google Scholar] [CrossRef]
- Xia, H.; Li, X.; Zhou, J.; Wang, B.; Chu, Y.; Li, Y.; Wu, G.; Zhang, D.; Xue, B.; Zhang, X.; et al. Interfacial Chemical Bridge Constructed by Zwitterionic Sulfamic Acid for Efficient and Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 3186–3192. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Yu, H.; Wang, J.; Huang, C.; Huang, J. Mechanism of bifunctional p-amino benzenesulfonic acid modified interface in perovskite solar cells. Chem. Eng. J. 2021, 420, 129579. [Google Scholar] [CrossRef]
- Yan, J.; Lin, Z.; Cai, Q.; Wen, X.; Mu, C. Choline Chloride-Modified SnO2 Achieving High Output Voltage in MAPbI3 Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 3504–3511. [Google Scholar] [CrossRef]
- Zuo, L.; Chen, Q.; De Marco, N.; Hsieh, Y.-T.; Chen, H.; Sun, P.; Chang, S.-Y.; Zhao, H.; Dong, S.; Yang, Y. Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Lett. 2016, 17, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kamarudin, M.A.; Huey, N.C.; Yang, F.; Pandey, M.; Kapil, G.; Ma, T.; Hayase, S. Interfacial Sulfur Functionalization Anchoring SnO2 and CH3NH3PbI3 for Enhanced Stability and Trap Passivation in Perovskite Solar Cells. ChemSusChem 2018, 11, 3941–3948. [Google Scholar] [CrossRef]
- Xiong, Z.; Lan, L.; Wang, Y.; Lu, C.; Qin, S.; Chen, S.; Zhou, L.; Zhu, C.; Li, S.; Meng, L.; et al. Multifunctional Polymer Framework Modified SnO2 Enabling a Photostable α-FAPbI3 Perovskite Solar Cell with Efficiency Exceeding 23%. ACS Energy Lett. 2021, 6, 3824–3830. [Google Scholar] [CrossRef]
- Luan, Y.; Yi, X.; Mao, P.; Wei, Y.; Zhuang, J.; Chen, N.; Lin, T.; Li, C.; Wang, J. High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis Using 2,2,2-Trifluoroethanol-Incorporated SnO2. iScience 2019, 16, 433–441. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S.F. High Efficiency Planar-Type Perovskite Solar Cells with Negligible Hysteresis using EDTA-Complexed SnO2. Nat. Commun. 2018, 9, 3239. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Guo, F.; Wang, X.; Xu, K.; Lei, M.; Liang, Y.; Zhao, Y.; Xu, D. SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability. Adv. Mater. 2018, 30, 1805153. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Du, J.; Guo, X.; Lin, Z.; Ma, J.; Su, J.; Feng, L.; Zhang, C.; Zhang, J.; Chang, J.; et al. Polyelectrolyte-Doped SnO2 as a Tunable Electron Transport Layer for High-Efficiency and Stable Perovskite Solar Cells. Sol. RRL 2020, 4, 1900336. [Google Scholar] [CrossRef]
- Hwang, S.; Larina, L.; Lee, H.; Kim, S.; Choi, K.S.; Jeon, C.; Ahn, B.T.; Shin, B. Wet Pretreatment-Induced Modification of Cu(In,Ga)Se2/Cd-Free ZnTiO Buffer Interface. ACS Appl. Mater. Interfaces 2018, 10, 20920–20928. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H.; Heasley, R.; Sun, L.; Steinmann, V.; Jaramillo, R.; Hartman, K.; Chakraborty, R.; Sinsermsuksakul, P.; Chua, D.; Buonassisi, T.; et al. Co-optimization of SnS absorber and Zn(O,S) buffer materials for improved solar cells. Prog. Photovolt. Res. Appl. 2015, 23, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Jung, H.J.; Park, I.J.; Larson, B.W.; Dunfield, S.P.; Xiao, C.; Kim, J.; Tong, J.; Boonmongkolras, P.; Ji, S.G.; et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 2020, 368, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H.; Kim, J.; Kim, G.; Jung, H.; Kim, S.; Moon, C.S.; Lee, S.J.; Shin, S.S.; Hao, X.; Yun, J.S.; et al. Transparent Electrodes Consisting of a Surface-Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four-Terminal Tandem Applications. Small Methods 2020, 4, 2000074. [Google Scholar] [CrossRef]
- Jung, H.; Kim, G.; Jang, G.S.; Lim, J.; Kim, M.; Moon, C.S.; Hao, X.; Jeon, N.J.; Yun, J.S.; Park, H.H.; et al. Transparent Electrodes with Enhanced Infrared Transmittance for Semitransparent and Four-Terminal Tandem Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 30497–30503. [Google Scholar] [CrossRef]
- Park, H.H. Transparent Electrode Techniques for Semitransparent and Tandem Perovskite Solar Cells. Electron. Mater. Lett. 2021, 17, 18–32. [Google Scholar] [CrossRef]
- Eom, T.; Kim, S.; Agbenyeke, R.E.; Jung, H.; Shin, S.M.; Lee, Y.K.; Kim, C.G.; Chung, T.; Jeon, N.J.; Park, H.H.; et al. Copper Oxide Buffer Layers by Pulsed-Chemical Vapor Deposition for Semitransparent Perovskite Solar Cells. Adv. Mater. Interfaces 2020, 8, 2001482. [Google Scholar] [CrossRef]
- Park, H.H.; Song, S.; Seo, J. Perspective: Approaches for layers above the absorber in perovskite solar cells for semitransparent and tandem applications. Mater. Today Energy 2021, 21, 100729. [Google Scholar] [CrossRef]
ETL | Method | Device Stack | JSC (mA/cm2) | VOC (V) | FF (%) | η (%) | Institute, Year [Ref.] |
---|---|---|---|---|---|---|---|
Ta:SnO2 | Chemical Bath Deposition | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | 21.7 → 22.8 | 1.16 → 1.16 | 77.7 → 78.6 | 19.5 → 20.8 | Fudan, 2019 [22] |
Bilayer F:SnO2 | Spin Coating | FTO/ETL/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au | 21.7 → 22.9 | 1.03 → 1.13 | 72.3 → 78.1 | 16.3 → 20.2 | Huazhong UST, 2018 [23] |
Li:SnO2 | Spin Coating | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | 22.0 → 23.3 | 1.08 → 1.11 | 64.2 → 70.7 | 15.3 → 18.2 | KIST, 2016 [24] |
Nb:SnO2 | Spin Coating | FTO/ETL/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au | 21.7 → 22.4 | 1.06 → 1.08 | 65.9 → 72.7 | 15.1 → 17.6 | Shaanxi Normal U., 2017 [25] |
Y:SnO2 | Hydrothermal Growth | FTO/ETL/MAPbI3/Spiro-OMeTAD/Au | 19.3 → 22.6 | 1.05 → 1.08 | 66.0 → 71.0 | 13.4 → 17.3 | Wuhan U. & Toledo, 2017 [26] |
Sb:SnO2 | Spin Coating | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | 22.3 → 22.6 | 1.01 → 1.06 | 69.6 → 72.0 | 15.7 → 17.2 | UNL, 2016 [27] |
Ga:SnO2 | Spin Coating | AZO/ETL/CsFAMAPb(Br,I)3/Spiro-OMeTAD/Au | 22.0 → 22.8 | 1.00 → 1.07 | 57.0 → 70.0 | 12.5 → 17.0 | Adolphe Merkle Inst. & HZB, 2018 [28] |
Mg:SnO2 | Spin Coating | FTO/ETL/MAPbI3/Spiro-OMeTAD/Au | 17.4 → 21.4 | 0.94 → 1.00 | 50.0 → 70.8 | 8.2 → 15.2 | Wuhan U., 2016 [29] |
Al:SnO2 | Spin Coating | FTO/ETL/MAPbI3/Spiro-OMeTAD/Au | 16.8 → 19.4 | 1.00 → 1.03 | 53.0 → 58.0 | 9.0 → 12.1 | UESTC, 2017 [30] |
ETL | Method | Device Stack | JSC (mA/cm2) | VOC (V) | FF (%) | η (%) | Institute, Year [Ref.] |
---|---|---|---|---|---|---|---|
In2O3/SnO2 | Spin Coating | ITO/ETL/MAFAPbICl/spiro-OMeTAD/Au | 24.3 → 24.5 | 1.13 → 1.16 | 78.1 → 81.2 | 21.4 → 23.1 | Nankai, 2020 [31] |
SnO2/Eu:WOx | Spin Coating | FTO/ETL/CsFAMAPbIBr/spiro-OMeTAD/Eu:WOx/Au | 23.3 → 24.0 | 1.11 → 1.16 | 73.4 → 79.4 | 19.0 → 22.1 | Jilin, 2021 [32] |
TiO2/SnO2 | Potentiostatic Anodization, Spin Coating | FTO/ETL/MAFAPbBrI/spiro-OMeTAD/Ag | 22.1 → 22.9 | 1.14 → 1.20 | 75.4 → 76.4 | 19.0 → 21.1 | Toronto, POSTECH, 2017 [33] |
TiO2/SnO2 | Spray Pyrolysis, Spin Coating | FTO/ETL/MAPbI3/PTAA/Au | 21.5 → 22.6 | 1.10 → 1.13 | 69.0 → 78.0 | 16.4 → 19.8 | EPFL, 2017 [34] |
SnO2/MgO | Spin Coating | ITO/ETL/MAPbI3/spiro-OMeTAD/Au | 21.3 → 22.1 | 1.10 → 1.13 | 64.9 → 75.7 | 15.2 → 19.0 | RTV, 2018 [35] |
PbO:SnO2/ SnO2 | Spin Coating | FTO/ETL/MAPbI3/spiro-OMeTAD/Au | 20.9 → 22.6 | 1.11 → 1.10 | 72.9 → 75.5 | 17.0 → 18.8 | CAS, 2021 [36] |
MgO/SnO2 | Spin Coating | FTO/ETL/MAPbI3/spiro-OMeTAD/Au | 21.6 → 22.7 | 1.07 → 1.10 | 71.0 → 73.0 | 16.4 → 18.2 | Wuhan, 2017 [37] |
SnO2/TiO2 | Chemical Bath Deposition | FTO/ETL/MAPbI3/spiro-OMeTAD/Ag | 22.2 → 22.5 | 0.97 → 1.01 | 56.0 → 79.0 | 12.0 → 18.1 | ECUST, Griffith, 2017 [38] |
SnO2/ZnO | Spin Coating | ITO/ETL/CsPbI2Br/spiro-OMeTAD/MoO3/Ag | 14.7 → 15.0 | 1.06 → 1.23 | 75.7 → 78.8 | 11.9 → 14.6 | South China UT, 2018 [39] |
ETL | Method | Device Stack | JSC (mA/cm2) | VOC (V) | FF (%) | η (%) | Institute, Year [Ref.] |
---|---|---|---|---|---|---|---|
SnO2/RbF | Spin Coating | ITO/ETL/CsMAFAPbIBr/CH3O-PEAI/Spiro-OMeTAD/Au | 24.2 → 24.3 | 1.20 → 1.21 | 77.4 → 79.3 | 22.4 → 23.4 | CAS, 2021 [40] |
p-SnO2:RbF/m-SnO2/RbF | Spin Coating | ITO/ETL/CsMAFAPbIBrCl/Spiro-OMeTAD/Ag | 23.7 → 24.5 | 1.11 → 1.15 | 77.8 → 82.1 | 20.6 → 22.7 | Southwest Petrolium, 2022 [41] |
SnO2/4-Imidazoleacetic acid hydrochloride (ImAcHCl) | Spin Coating | FTO/ETL/MA0.05FA0.95Pb(I0.95Br0.05)3/Spiro-OMeTAD/Au | 22.7 → 23.1 | 1.09 → 1.15 | 79.0 → 79.0 | 19.5 → 21.0 | SKKU, 2019 [42] |
SnO2/KOH | CBD, Spin Coating | FTO/ETL/Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au | 22.5 → 22.6 | 1.10 → 1.15 | 78.0 → 79.0 | 19.3 → 20.5 | Wuhan UT, 2018 [43] |
SnO2/Cs2CO3 | Spin Coating | FTO/ETL/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/Spiro-OMeTAD/Au | 20.7 → 23.3 | 1.14 → 1.17 | 66.2 → 71.4 | 15.6 → 19.5 | Shanghai UES, 2021 [44] |
SnO2/KCl | Spin Coating | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | 22.0 → 22.7 | 1.05 → 1.06 | 77.3 → 77.6 | 17.8 → 18.7 | UST Beijing, 2020 [45] |
SnO2/NaCl | Spin Coating | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | 22.0 → 22.1 | 1.05 → 1.06 | 77.3 → 79.0 | 17.8 → 18.5 | UST Beijing, 2020 [45] |
SnO2/LiCl | Spin Coating | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | 22.0 → 22.5 | 1.05 → 1.06 | 77.3 → 76.9 | 17.8 → 18.3 | UST Beijing, 2020 [45] |
SnO2/RbCl | Spin Coating | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | 22.0 → 22.2 | 1.05 → 1.04 | 77.3 → 77.4 | 17.8 → 17.9 | UST Beijing, 2020 [45] |
SnO2/CsCl | Spin Coating | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | 22.0 → 22.1 | 1.05 → 1.05 | 77.3 → 76.1 | 17.8 → 17.7 | UST Beijing, 2020 [45] |
ETL | Method | Device Stack | JSC (mA/cm2) | VOC (V) | FF (%) | η (%) | Institute, Year [Ref.] |
---|---|---|---|---|---|---|---|
CoCl2:SnO2 | Spin Coating | ITO/ETL/MAFAPbIBrCl/Spiro-OMeTAD/Au | 24.2 → 24.6 | 1.16 → 1.20 | 78.9 → 80.8 | 22.2 → 23.8 | Nankai, 2021 [46] |
Heparin potassium:SnO2 | Spin Coating | FTO/ETL/Cs0.05MA0.10FA0.85Pb(I0.97Br0.03)3/Spiro-OMeTAD/Au | 24.3 → 25.0 | 1.13 → 1.16 | 75.4 → 79.4 | 20.7 → 23.1 | Huazhong UST, 2020 [47] |
KCl:SnO2 | Spin Coating | ITO/ETL/MAFAPbIBr/Spiro-OMeTAD/Au | 24.0 → 24.2 | 1.08 → 1.14 | 77.9 → 80.7 | 20.2 → 22.2 | Nanjing, 2020 [48] |
Girard’s Reagent T (GRT):SnO2 | Spin Coating | ITO/ETL/Rb0.05(FA0.95MA0.05)0.95PbI2.85Br0.15/Spiro-OMeTAD/Au | 22.6 → 22.9 | 1.08 → 1.15 | 81.2 → 82.3 | 19.8 → 21.6 | Chongqing, 2021 [49] |
NH4Cl:SnO2 | Spin Coating | ITO/ETL/MAFAPbIBr/Spiro-OMeTAD/Au | 23.2 → 24.3 | 1.10 → 1.15 | 73.5 → 76.8 | 18.7 → 21.4 | Soochow, 2019 [50] |
Potassium sodium tartrate (PSTA):SnO2 | Spin Coating | ITO/ETL/MA0.85FA0.15PbI3/Spiro-OMeTAD/Ag | 23.5 → 24.5 | 1.08 → 1.12 | 71.9 → 76.9 | 18.3 → 21.1 | Jilin Normal, 2021 [51] |
Phosphoric acid:SnO2 | Spin Coating | ITO/ETL/MA0.15FA0.85Pb(I0.85Br0.15)3/Spiro-OMeTAD/Ag | 22.5 → 23.2 | 1.18 → 1.17 | 73.8 → 77.4 | 19.7 → 21.0 | CAS, 2019 [52] |
Tetramethylammonium hydroxide (TMAH):SnO2 | Spin Coating | FTO/ETL/MA0.25FA0.75PbI2.5Br0.5/Spiro-OMeTAD/Au | 22.8 → 23.3 | 1.13 → 1.14 | 70.4 → 77.4 | 18.1 → 20.5 | Shenzhen, 2018 [53] |
CsF:SnO2 | Spin Coating | FTO/ETL/Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3/4-tert-butyl-D-phenylalanine (D4TBP)/Spiro-OMeTAD/Au | 22.6 → 23.2 | 1.13 → 1.16 | 75.0 → 76.0 | 19.3 → 20.5 | KMU, 2020 [54] |
(NH4)2S:SnO2 | Spin Coating | ITO/ETL/MAFAPbIBr/Spiro-OMeTAD/Ag | 22.4 → 23.0 | 1.13 → 1.15 | 73.4 → 76.0 | 18.7 → 20.0 | CAS, 2019 [55] |
ETL | Method | Device Stack | JSC (mA/cm2) | VOC (V) | FF (%) | η (%) | Institute, Year [Ref.] |
---|---|---|---|---|---|---|---|
SnO2/fulleropyrrolidine (NMBF-Cl) | Spin Coating | ITO/ETL/MAFAPbIBr/Spiro-OMeTAD/Ag | 25.2 → 26.0 | 1.13 → 1.12 | 75.0 → 77.0 | 21.4 → 22.3 | Wuhan UT, 2020 [56] |
SnO2/Polystyrene (PS) | Spin Coating | ITO/ETL/MAFAPbIBr/PS/Spiro-OMeTAD/Au | 23.8 → 24.0 | 1.09 → 1.10 | 74.0 → 76.0 | 19.3 → 20.5 | CAS, 2019 [57] |
SnO2/Graphene quantum dots | Spin Coating | ITO/ETL/MAPbI3/spiro-OMeTAD/Au | 22.1 → 23.1 | 1.10 → 1.13 | 73.6 → 77.8 | 17.9 → 20.3 | Zhejiang, 2017 [58] |
SnO2/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) | Spin Coating | FTO/ETL/MAPbI3/spiro-OMeTAD/PbS/Au | 22.3 → 23.3 | 1.13 → 1.14 | 75.0 → 74.0 | 18.8 → 19.6 | Wuhan, 2017 [59] |
SnO2/PCBM | Spin Coating | FTO/ETL/MAPbI3/spiro-OMeTAD/Au | 21.1 → 22.6 | 1.09 → 1.12 | 71.5 → 75.8 | 16.5 → 19.1 | Toledo, Wuhan, 2016 [60] |
SnO2/C60-SAM | PEALD, Spin Coating | FTO/ETL/MAPbI3/spiro-OMeTAD/Au | 21.2 → 21.4 | 1.07 → 1.13 | 75.5 → 79.1 | 17.2 → 19.0 | Toledo, 2016 [61] |
SnO2/[6,6]-phenyl-C61-butyric acid (PCBA) | Spin Coating | ITO/ETL/MA0.34FA0.66PbI2.85Br0.15/Spiro-OMeTAD/MoO3/Au | 22.0 → 22.2 | 1.10 → 1.10 | 64.0 → 76.0 | 15.4 → 18.6 | Eindhoven, 2019 [62] |
ETL | Method | Device Stack | JSC (mA/cm2) | VOC (V) | FF (%) | η (%) | Institute, Year [Ref.] |
---|---|---|---|---|---|---|---|
Polymeric carbon nitrides (cPCN):SnO2 | Spin Coating | FTO/ETL/MAFAPbIBr/Spiro-OMeTAD/Ag | 23.4 → 24.9 | 1.11 → 1.13 | 82.0 → 82.5 | 21.3 → 23.2 | CAS, 2021 [63] |
Nb2C:SnO2 | Spin Coating | ITO/ETL/Cs0.05MA0.07FA0.88PbI3/Spiro-OMeTAD/MoO3/Au | 24.7 → 25.3 | 1.11 → 1.14 | 69.1 → 79.5 | 19.0 → 22.9 | China UPB, 2021 [64] |
Carbon quantum dot:SnO2 | Spin Coating | ITO/ETL/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/Spiro-OMeTAD/MoO3/Au | 23.1 → 24.1 | 1.07 → 1.14 | 77.8 → 82.9 | 19.2 → 22.8 | CAS, 2020 [65] |
Polyacrylamide (PAM):SnO2 | Spin Coating | ITO/ETL/MAFAPbIBrCl/Spiro-OMeTAD/Au | 23.2 → 24.8 | 1.10 → 1.12 | 79.2 → 81.1 | 20.2 → 22.6 | Guilin UT, CAS, 2022 [66] |
g-C3N4:SnO2 | Spin Coating | ITO/ETL/CsMAFAPbIBr/Spiro-OMeTAD/Au | 23.7 → 24.0 | 1.11 → 1.12 | 76.2 → 78.3 | 20.2 → 22.1 | Xian Jiaotong, 2020 [67] |
Graphdiyne:SnO2 | Spin Coating | ITO/ETL/CsMAFAPbIBr/Spiro-OMeTAD/Au | 22.9 → 23.3 | 1.13 → 1.14 | 74.3 → 79.6 | 19.2 → 21.1 | UST Beijing, 2020 [68] |
Naphthalene diimide graphene:SnO2 | Spin Coating | ITO/ETL/MA0.17FA0.83PbI2.63Br0.37/Spiro-OMeTAD/Au | 23.2 → 22.7 | 1.10 → 1.08 | 74.6 → 82.1 | 19.0 → 20.2 | Huazhong UST, 2018 [69] |
Carbon nanodot:SnO2 | Spin Coating | ITO/ETL/CsMAFAPbIBr/Spiro-OMeTAD/Au | 22.5 → 23.1 | 1.08 → 1.10 | 76.0 → 79.0 | 18.5 → 20.0 | UST Beijing, 2019 [70] |
ETL | Method | Device Stack | JSC (mA/cm2) | VOC (V) | FF (%) | η (%) | Institute, Year [Ref.] |
---|---|---|---|---|---|---|---|
KCl:SnO2/BTAC4 | Spin Coating | ITO/ETL/Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3/Spiro-OMeTAD/Ag | 23.1 → 24.2 | 1.23 → 1.25 | 75.0 → 76.1 | 21.2 → 23.1 | CAS, 2021 [71] |
KCl:SnO2/Y6 | Spin Coating | ITO/ETL/Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3/Spiro-OMeTAD/Ag | 23.1 → 23.6 | 1.23 → 1.24 | 75.0 → 75.6 | 21.2 → 22.1 | CAS, 2021 [71] |
SnO2/Si(OCH3)3(CH2)3I (I-SAM) | Spin Coating, Immerse in solution | ITO/ETL/Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au | 23.0 → 23.3 | 1.13 → 1.19 | 77.4 → 77.8 | 20.2 → 21.4 | Brown, 2021 [72] |
SnO2/Triphenylphosphine oxide (TPPO) | Spin Coating | ITO/ETL/Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au | 24.4 → 24.3 | 1.08 → 1.11 | 72.2 → 77.0 | 19.0 → 20.7 | SUST, 2019 [73] |
SnO2/Thiophene-3-acetic acid | Spin Coating | ITO/ETL/MAPbI3/spiro-OMeTAD/MoO3/Ag | 22.3 → 23.0 | 1.07 → 1.12 | 73.5 → 80.1 | 17.5 → 20.6 | South China UT, 2021 [74] |
SnO2/Aminosulfonic acid | Spin Coating, Immerse in solution | ITO/ETL/Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au | 21.8 → 22.8 | 1.12 → 1.15 | 74.8 → 77.9 | 18.2 → 20.4 | Beihang, 2020 [75] |
SnO2/p-amino benzenesulfonic acid (ABSA) | Spin Coating | ITO/ETL/MAPbI3/Spiro-OMeTAD/MoO3/Ag | 22.4 → 22.9 | 1.10 → 1.13 | 73.0 → 78.8 | 18.0 → 20.3 | South China UT, 2021 [76] |
SnO2/Choline chloride | Spin Coating, Immerse in solution | FTO/ETL/MAPbI3/Spiro-OMeTAD/Au | 21.3 → 22.8 | 1.07 → 1.15 | 73.9 → 72.4 | 16.8 → 18.9 | Renmin U. China, 2020 [77] |
SnO2/4-pyridinecarboxylic acid (PA-SAM) | Spin Coating | ITO/SnO2-SAM/MAPbI3/spiro-OMeTAD/Au | 21.7 → 22.0 | 1.06 → 1.10 | 74.9 → 77.4 | 17.2 → 18.8 | UCLA, 2017 [78] |
SnO2/Potassium hexylxanthate | Spin Coating | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | 21.7 → 22.6 | 1.03 → 1.06 | 73.7 → 76.9 | 16.6 → 18.4 | Kyushu Tech., 2018 [79] |
SnO2/4-cyanobenzoic acid (CBA-SAM) | Spin Coating | ITO/SnO2-SAM/MAPbI3/spiro-OMeTAD/Au | 21.7 → 21.7 | 1.06 → 1.08 | 74.9 → 78.1 | 17.2 → 18.3 | UCLA, 2017 [78] |
SnO2/benzoic acid (BA-SAM) | Spin Coating | ITO/SnO2-SAM/MAPbI3/spiro-OMeTAD/Au | 21.7 → 21.9 | 1.06 → 1.11 | 74.9 → 74.6 | 17.2 → 18.1 | UCLA, 2017 [78] |
ETL | Method | Device Stack | JSC (mA/cm2) | VOC (V) | FF (%) | η (%) | Institute, Year [Ref.] |
---|---|---|---|---|---|---|---|
Poly(ethylene glycol) diacrylate (PEGDA):SnO2 | Spin Coating | ITO/ETL/FAPbI3/Spiro-OMeTAD/MoO3/Ag | 24.8 → 25.3 | 1.09 → 1.14 | 80.6 → 81.0 | 21.8 → 23.3 | CAS, Chongqing, 2021 [80] |
2,2,2-trifluoroethanol:SnO2, O2 plasma | Spin Coating | ITO/ETL/MAFAPbIBr/Spiro-OMeTAD/Au | 23.1 → 23.9 → 24.1 | 1.10 → 1.12 → 1.12 | 75.5 → 78.0 → 80.2 | 19.2 → 20.9 → 21.7 | CAS, 2019 [81] |
Ethylene diamine tetraacetic acid (EDTA):SnO2 | Spin Coating | ITO/ETL/Cs0.05FA0.95PbI3/Spiro-OMeTAD/Au | 22.8 → 24.6 | 1.10 → 1.11 | 75.5 → 79.2 | 18.9 → 21.6 | Shaanxi Normal, 2018 [82] |
Polyethylene glycol (PEG):SnO2 | Spin Coating | ITO/ETL/Cs0.05FA0.81MA0.14Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au | 22.6 → 22.7 | 1.09 → 1.12 | 77.9 → 81.9 | 19.2 → 20.8 | Peking, 2018 [83] |
Polyethylenimine (PEIE):SnO2 | Spin Coating | ITO/ETL/CsMAFAPbICl/Spiro-OMeTAD/Ag | 22.9 → 23.8 | 1.08 → 1.14 | 76.0 → 76.0 | 18.7 → 20.6 | Xidian, 2020 [84] |
ETL | Device Stack | Encapsulated | Conditions | Continuous 1 SUN Illumination? | Duration | η Maintained | Institute, Year [Ref.] |
---|---|---|---|---|---|---|---|
F:SnO2 | FTO/bilayer F:SnO2/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au | Y | 40–50%, Air, RT | N | 300 h | >85% | Huazhong UST, 2018 [23] |
Nb:SnO2 | FTO/Nb:SnO2/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au | N | Air, RT | N | 288 h | 90% | Shaanxi Normal U., 2017 [25] |
Sb:SnO2 | ITO/Sb:SnO2/MAPbI3/Spiro-OMeTAD/Au | N | Dessicator, RT | N | 504 h | >95% | UNL, 2016 [27] |
Ga:SnO2 | AZO/Ga:SnO2/CsFAMAPb(Br,I)3/Spiro-OMeTAD/Au | N | N2, 1 SUN | Y | 1000 h | ~70% | Adolphe Merkle Inst. & HZB, 2018 [28] |
Mg:SnO2 | FTO/Mg:SnO2/MAPbI3/Spiro-OMeTAD/Au | N | <20%, Air | N | 720 h | >90% | Wuhan U., 2016 [29] |
In2O3/SnO2 | ITO/ETL/MAFAPbICl/spiro-OMeTAD/Au | N | N2 | N | 1920 h | 98% | Nankai, 2020 [31] |
N | Y | 180 h | 91% | ||||
N | 75% | N | 120 h | ~80% | |||
SnO2/Eu:WOx | FTO/ETL/CsFAMAPbIBr/spiro-OMeTAD/Eu:WOx/Au | N | 16–25 °C, 20–30% | Y | 500 h | >90% | Jilin, 2021 [32] |
N | Ambient | N | 2000 h | >90% | |||
TiO2/SnO2 | FTO/TiO2-SnO2/MAPbI3/PTAA/Au | N | ~20%, Air | N | 1200 h | >95% | EPFL, 2017 [34] |
SnO2/MgO | ITO/ETL/MAPbI3/spiro-OMeTAD/Au | N | 30% | N | 2568 h | 67% | RTV, 2018 [35] |
PbO:SnO2/SnO2 | FTO/ETL/MAPbI3/spiro-OMeTAD/Au | RT, 15% | N | 1080 h | >90% | CAS, 2021 [36] | |
SnO2/ZnO | ITO/ETL/CsPbI2Br/spiro-OMeTAD/MoO3/Ag | N | 85 °C, N2 | N | 300 h | 80% | South China UT, 2018 [39] |
SnO2/RbF | ITO/ETL/CsMAFAPbIBr/CH3O-PEAI/Spiro-OMeTAD/Au | N | White LED light illumination | N | 200 h | ~75% | CAS, 2021 [40] |
p-SnO2/RbF/m-SnO2/RbF | ITO/ETL/CsMAFAPbIBrCl/Spiro-OMeTAD/Ag | N | MPPT | Y | 300 h | 90% | Southwest Petrolium, 2022 [41] |
SnO2/4-Imidazoleacetic acid hydrochloride (ImAcHCl) | FTO/ETL/MA0.05FA0.95Pb(I0.95Br0.05)3/Spiro-OMeTAD/Au | N | RT, 46–60% | N | 840 h | 94% | SKKU, 2019 [42] |
FTO/ETL/MA0.05FA0.95Pb(I0.95Br0.05)3/PTAA/Au | N | 85 °C, N2 | N | 40 h | 90% | SKKU, 2019 [42] | |
SnO2/Cs2CO3 | FTO/ETL/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/Spiro-OMeTAD/Au | N | 35–45% | N | 340 h | 91% | Shanghai UES, 2021 [44] |
SnO2/NaCl | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | N | N | 960 h | >90% | UST Beijing, 2020 [45] | |
CoCl2:SnO2 | ITO/ETL/MAFAPbIBrCl/Spiro-OMeTAD/Au | N | N2 | Y | 200 h | 84% | Nankai, 2021 [46] |
N | 60 °C, >50% | N | 100 h | 80% | |||
Heparin potassium:SnO2 | FTO/ETL/Cs0.05MA0.10FA0.85Pb(I0.97Br0.03)3/Spiro-OMeTAD/Au | Y | 60–65 °C | Y | 1000 h | ~97% | Huazhong UST, 2020 [47] |
KCl:SnO2 | ITO/ETL/MAFAPbIBr/Spiro-OMeTAD/Au | N | Y | 120 h | 88% | Nanjing, 2020 [48] | |
Girard’s Reagent T (GRT):SnO2 | ITO/ETL/Rb0.05(FA0.95MA0.05)0.95PbI2.85Br0.15/Spiro-OMeTAD/Au | N | 5–10%, RT | N | 1440 h | 96% | Chongqing, 2021 [49] |
N | 60 °C, N2 | N | 720 h | 100% | |||
N | N2 | Y | 672 h | 59% | |||
NH4Cl:SnO2 | ITO/ETL/MAFAPbIBr/Spiro-OMeTAD/Au | N | N2 | N | 1000 h | >95% | Soochow, 2019 [50] |
Potassium sodium tartrate (PSTA):SnO2 | ITO/ETL/MA0.85FA0.15PbI3/Spiro-OMeTAD/Ag | N | 25 °C, 45%, Air | N | 1440 h | >95% | Jilin Normal, 2021 [51] |
Tetramethylammonium hydroxide (TMAH):SnO2 | FTO/ETL/MA0.25FA0.75PbI2.5Br0.5/Spiro-OMeTAD/Au | Y | 15% | N | 360 h | 97% | Shenzhen, 2018 [53] |
CsF:SnO2 | FTO/ETL/Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3/4-tert-butyl-D-phenylalanine (D4TBP)/Spiro-OMeTAD/Au | N | MPPT | Y | 800 h | >90% | KMU, 2020 [54] |
SnO2/NMBF-Cl | ITO/ETL/MAFAPbIBr/Spiro-OMeTAD/Ag | N | 25–35 °C, 45–60%, Air | N | 1000 h | >95% | Wuhan UT, 2020 [56] |
SnO2/Polystyrene (PS) | ITO/ETL/MAFAPbIBr/PS/Spiro-OMeTAD/Au | N | Air | N | 2800 h | >90% | CAS, 2019 [57] |
N | 25 °C, 25%,MPPT | Y | 72 h | >90% | |||
SnO2/GQDs | ITO/ETL/MAPbI3/spiro-OMeTAD/Au | N | N2 → 20–30%, Air | N | 2160 h | >95% | Zhejiang, 2017 [58] |
SnO2/PCBM | FTO/ETL/MAPbI3/spiro-OMeTAD/PbS/Au | N | Air | N | 1000 h | ~100% | Wuhan, 2017 [59] |
SnO2/C60-SAM | FTO/ETL/MAPbI3/spiro-OMeTAD/Au | N | <10%, room light, N2 | N | 480 h | > 98% | Toledo, 2016 [61] |
Polymeric carbon nitrides (cPCN):SnO2 | FTO/ETL/MAFAPbIBr/Spiro-OMeTAD/Ag | N | N2 | N | 2880 h | 95% | CAS, 2021 [63] |
N | 25–35%, Air | N | 2000 h | 88% | |||
Nb2C:SnO2 | ITO/ETL/Cs0.05MA0.07FA0.88PbI3/Spiro-OMeTAD/MoO3/Au | N | 25 °C, 40–60% | N | 960 h | 98% | China UPB, 2021 [64] |
Carbon quantum dot:SnO2 | ITO/ETL/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/Spiro-OMeTAD/MoO3/Au | N | 25 °C, 40–60%, Air | N | 1000 h | 96% | CAS, 2020 [65] |
Polyacrylamide (PAM):SnO2 | ITO/ETL/MAFAPbIBrCl/Spiro-OMeTAD/Au | N | 45–55% | N | 1080 h | 90% | Guilin UT, CAS, 2022 [66] |
g-C3N4:SnO2 | ITO/ETL/CsMAFAPbIBr/Spiro-OMeTAD/Au | N | 25 °C, 60%, Air | N | 1500 h | 90% | Xian Jiaotong, 2020 [67] |
N | 85 °C, 60%, Air | N | 75 h | 80% | |||
Carbon nanodot:SnO2 | ITO/ETL/CsMAFAPbIBr/Spiro-OMeTAD/Au | N | 20 °C, 20–30%, Air, UV | N | 200 h | 90% | UST Beijing, 2019 [70] |
N | Dry Air | N | 1200 h | >90% | |||
KCl:SnO2/BTAC4 | ITO/ETL/Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3/Spiro-OMeTAD/Ag | N | 35% | N | 768 h | ~90% | CAS, 2021 [71] |
KCl:SnO2/Y6 | N | 35% | N | 768 h | ~90% | ||
SnO2/Si(OCH3)3(CH2)3I (I-SAM) | ITO/ETL/Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au | N | MPPT, N2, RT | Y | 1200 h | >90% | Brown, 2021 [72] |
SnO2/Thiophene-3-acetic acid | ITO/ETL/MAPbI3/spiro-OMeTAD/MoO3/Ag | N | N2 | N | 1440 h | >90% | South China UT, 2021 [74] |
N | 85 °C, 70%, Air | N | 130 h | >80% | |||
SnO2/Aminosulfonic acid | ITO/ETL/Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au | N | 25–35%, Air | N | 1000 h | >80% | Beihang, 2020 [75] |
N | 60 °C, N2 | N | 500 h | >75% | |||
SnO2/p-amino benzenesulfonic acid (ABSA) | ITO/ETL/MAPbI3/Spiro-OMeTAD/MoO3/Ag | N | N2 | N | 720 h | 57% | South China UT, 2021 [76] |
SnO2/Potassium hexylxanthate | ITO/ETL/MAPbI3/Spiro-OMeTAD/Au | N | RT | N | 1680 h | ~90% | Kyushu Tech., 2018 [79] |
Poly(ethylene glycol) diacrylate (PEGDA):SnO2 | ITO/ETL/FAPbI3/Spiro-OMeTAD/MoO3/Ag | N | N2 | Y | 850 h | >90% | CAS, Chongqing, 2021 [80] |
N | 30–35%, Air | N | 1000 h | 98% | |||
2,2,2-trifluoroethanol:SnO2 | ITO/ETL/MAFAPbIBr/Spiro-OMeTAD/Au | N | 30–40% | N | 720 h | >90% | CAS, 2019 [81] |
Ethylene diamine tetraacetic acid (EDTA):SnO2 | ITO/ETL/Cs0.05FA0.95PbI3/Spiro-OMeTAD/Au | N | 35% | N | 2880 h | 92% | Shaanxi Normal, 2018 [82] |
N | 1 SUN | Y | 120 h | 86% | |||
Polyethylene glycol (PEG):SnO2 | ITO/ETL/Cs0.05FA0.81MA0.14Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au | N | 28–35 °C, 30–80%, Air | N | 2160 h | >97% | Peking, 2018 [83] |
Polyethylenimine (PEIE):SnO2 | ITO/ETL/MAFAPbI/Spiro-OMeTAD/Ag | N | 40% | N | 1680 h | 82% | Xidian, 2020 [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.H. Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells. Nanomaterials 2022, 12, 4326. https://doi.org/10.3390/nano12234326
Park HH. Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells. Nanomaterials. 2022; 12(23):4326. https://doi.org/10.3390/nano12234326
Chicago/Turabian StylePark, Helen Hejin. 2022. "Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells" Nanomaterials 12, no. 23: 4326. https://doi.org/10.3390/nano12234326
APA StylePark, H. H. (2022). Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells. Nanomaterials, 12(23), 4326. https://doi.org/10.3390/nano12234326