Synthesis of Co-Ni Alloy Particles with the Structure of a Solid Substitution Solution by Precipitation in a Supercritical Carbon Dioxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Co-Ni Sample Synthesis
2.3. XRD Characterization
2.4. Simulation of X-ray Diffraction Patterns
2.5. HRTEM Characterization
2.6. FTIR Characterization
2.7. Magnetic Measurements
3. Results and Discussion
3.1. Investigation of Structural Properties
3.2. Magnetic Characterization
3.3. Simulation of the Imperfect Structure of Metallic Particles and Calculation of XRD Patterns
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weller, D.; Moser, A. Thermal Effect Limits in Ultrahigh-Density Magnetic Recording. IEEE Trans. Magn. 1999, 35, 4423–4439. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic Nanoparticles: Preparation, Physical Properties, and Applications in Biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Cao, H.; Tao, Y.; Heeres, H.J.; Pescarmona, P.P. Transfer Hydrogenation from Glycerol over a Ni-Co/CeO2 Catalyst: A Highly Efficient and Sustainable Route to Produce Lactic Acid. Appl. Catal. B Environ. 2020, 263, 118273. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, H.; An, K.; Liu, Q.; Jin, W.; Liu, Y. Co–Ni Alloy Nanoparticles on La-Doped SiO2 for Direct Ethanol Synthesis from Syngas. Ind. Eng. Chem. Res. 2020, 59, 19539–19552. [Google Scholar] [CrossRef]
- Sato, H.; Kitakami, O.; Sakurai, T.; Shimada, Y.; Otani, Y.; Fukamichi, K. Structure and Magnetism of Hcp-Co Fine Particles. J. Appl. Phys. 1997, 81, 1858–1862. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Veintemillas-Verdaguer, S.; Bomati-Miguel, O.; Morales, M.P.; Xu, H.B. Thermal History Dependence of the Crystal Structure of Co Fine Particles. Phys. Rev. B 2005, 71, 024106. [Google Scholar] [CrossRef]
- Owen, E.A.; Jones, D.M. Effect of Grain Size on the Crystal Structure of Cobalt. Proc. Phys. Soc. Sect. B 1954, 67, 456–466. [Google Scholar] [CrossRef]
- Kitakami, O.; Sato, H.; Shimada, Y.; Sato, F.; Tanaka, M. Size Effect on the Crystal Phase of Cobalt Fine Particles. Phys. Rev. B 1997, 56, 13849–13854. [Google Scholar] [CrossRef]
- Li, W.; Borkiewicz, O.J.; Saubanère, M.; Doublet, M.-L.; Flahaut, D.; Chupas, P.J.; Chapman, K.W.; Dambournet, D. Atomic Structure of 2 Nm Size Metallic Cobalt Prepared by Electrochemical Conversion: An in Situ Pair Distribution Function Study. J. Phys. Chem. C 2018, 122, 23861–23866. [Google Scholar] [CrossRef]
- Longo, A.; Sciortino, L.; Giannici, F.; Martorana, A. Crossing the Boundary between Face-Centred Cubic and Hexagonal Close Packed: The Structure of Nanosized Cobalt Is Unraveled by a Model Accounting for Shape, Size Distribution and Stacking Faults, Allowing Simulation of XRD, XANES and EXAFS. J. Appl. Crystallogr. 2014, 47, 1562–1568. [Google Scholar] [CrossRef]
- Kowalewski, E.; Matus, K.; Gajek, A.; Śrębowata, A. Catalytic Hydrogenation of Nitrocyclohexane with CuCo/SiO2 Catalysts in Gas and Liquid Flow Reactors. Catalysts 2022, 12, 1062. [Google Scholar] [CrossRef]
- Jurca, B.; Peng, L.; Primo, A.; Gordillo, A.; Dhakshinamoorthy, A.; Parvulescu, V.I.; García, H. Promotional Effects on the Catalytic Activity of Co-Fe Alloy Supported on Graphitic Carbon for CO2 Hydrogenation. Nanomaterials 2022, 12, 3220. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, I.V.; Yakushkin, S.S.; Kazakova, M.A.; Trukhan, S.N.; Volkova, Z.N.; Gerashchenko, A.P.; Andreev, A.S.; Ishchenko, A.V.; Martyanov, O.N.; Lapina, O.B.; et al. Superparamagnetic Behaviour of Metallic Co Nanoparticles According to Variable Temperature Magnetic Resonance. Phys. Chem. Chem. Phys. 2021, 23, 2723–2730. [Google Scholar] [CrossRef] [PubMed]
- Balaev, D.A.; Poperechny, I.S.; Krasikov, A.A.; Semenov, S.V.; Popkov, S.I.; Knyazev, Y.V.; Kirillov, V.L.; Yakushkin, S.S.; Martyanov, O.N.; Raikher, Y.L. Dynamic Remagnetisation of CoFe2O4 Nanoparticles: Thermal Fluctuational Thawing of Anisotropy. J. Phys. D Appl. Phys. 2021, 54, 275003. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Yu, H.; Guan, F.; Hou, Z.; Cui, D.; Zhang, Y. Bimetallic Ni-Co Catalysts for Co-Production of Methane and Liquid Fuels from Syngas. Catal. Today 2021, 369, 167–174. [Google Scholar] [CrossRef]
- Elkins, J.; Mohapatra, J.; Xing, M.; Beatty, J.; Liu, J.P. Structural, Morphological and Magnetic Properties of Compositionally Modulated CoNi Nanowires. J. Alloys Compd. 2021, 864, 158123. [Google Scholar] [CrossRef]
- Loudjani, N.; Gouasmia, T.; Bououdina, M.; Bobet, J.L. Phase Formation and Magnetic Properties of Nanocrytalline Ni70Co30 Alloy Prepared by Mechanical Alloying. J. Alloys Compd. 2020, 846, 156392. [Google Scholar] [CrossRef]
- Shafi, K.V.P.M.; Gedanken, A.; Prozorov, R. Sonochemical Preparation and Characterization of Nanosized Amorphous Co–Ni Alloy Powders. J. Mater. Chem. 1998, 8, 769–773. [Google Scholar] [CrossRef]
- Mattei, G.; De Julia, C.; Mazzoldi, P.; Sada, C.; Battaglin, G. Synthesis, Structure, and Magnetic Properties of Co, Ni, and Co—Ni Alloy Nanocluster-Doped SiO2 Films by Sol—Gel Processing. Chem. Mater. 2002, 83, 3440–3447. [Google Scholar] [CrossRef]
- Sharma, S.; Gajbhiye, N.S.; Ningthoujam, R.S. Synthesis and Self-Assembly of Monodisperse CoxNi100-x (X = 50, 80) Colloidal Nanoparticles by Homogenous Nucleation. J. Colloid Interface Sci. 2010, 351, 323–329. [Google Scholar] [CrossRef]
- Khort, A.; Hedberg, J.; Mei, N.; Romanovski, V.; Blomberg, E.; Odnevall, I. Corrosion and Transformation of Solution Combustion Synthesized Co, Ni and CoNi Nanoparticles in Synthetic Freshwater with and without Natural Organic Matter. Sci. Rep. 2021, 11, 7860. [Google Scholar] [CrossRef] [PubMed]
- Ung, D.; Viau, G.; Ricolleau, C.; Warmont, F.; Gredin, P.; Fiévet, F. CoNi Nanowires Synthesized by Heterogeneous Nucleation in Liquid Polyol. Adv. Mater. 2005, 17, 338–344. [Google Scholar] [CrossRef]
- Panday, S.; Jeevanandam, P.; Daniel, B.S.S. Synthesis and Magnetic Properties of Nanocrystalline Co-Ni Alloys: A Review. Mater. Sci. Forum 2013, 736, 229–240. [Google Scholar] [CrossRef]
- Alekseev, E.S.; Alentiev, A.Y.; Belova, A.S.; Bogdan, V.I.; Bogdan, T.V.; Bystrova, A.V.; Gafarova, E.R.; Golubeva, E.N.; Grebenik, E.A.; Gromov, O.I.; et al. Supercritical Fluids in Chemistry. Russ. Chem. Rev. 2020, 89, 1337–1427. [Google Scholar] [CrossRef]
- Nesterov, N.S.; Simentsova, I.I.; Yudanov, V.F.; Martyanov, O.N. A Comparative FMR Study of the Reduction of Co-Containing Catalysts for the Fischer-Tropsch Process in Hydrogen and Supercritical Isopropanol. J. Struct. Chem. 2016, 57, 90–96. [Google Scholar] [CrossRef]
- Veselovskaya, J.V.; Derevschikov, V.S.; Shalygin, A.S.; Yatsenko, D.A. K2CO3-Containing Composite Sorbents Based on a ZrO2 Aerogel for Reversible CO2 Capture from Ambient Air. Microporous Mesoporous Mater. 2021, 310, 110624. [Google Scholar] [CrossRef]
- Polevaya, V.; Vorobei, A.; Gavrikov, A.; Matson, S.; Parenago, O.; Shishatskiy, S.; Khotimskiy, V. Modification of Poly(4-Methyl-2-Pentyne) in the Supercritical Fluid Medium for Selective Membrane Separation of CO2 from Various Gas Mixtures. Polymers 2020, 12, 2468. [Google Scholar] [CrossRef]
- Hutchings, G.J. Catalyst Synthesis Using Supercritical Carbon Dioxide: A Green Route to High Activity Materials. Top. Catal. 2009, 52, 982–987. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Supercritical Antisolvent Process for Pharmaceutical Applications: A Review. Processes 2020, 8, 938. [Google Scholar] [CrossRef]
- Adami, R.; Russo, P.; Amante, C.; De Soricellis, C.; Della Porta, G.; Reverchon, E.; Del Gaudio, P. Supercritical Antisolvent Technique for the Production of Breathable Naringin Powder. Pharmaceutics 2022, 14, 1623. [Google Scholar] [CrossRef]
- Franco, P.; Navarra, W.; Sacco, O.; De Marco, I.; Mancuso, A.; Vaiano, V.; Venditto, V. Photocatalytic Degradation of Atrazine under Visible Light Using Gd-Doped ZnO Prepared by Supercritical Antisolvent Precipitation Route. Catal. Today 2022, 397–399, 240–248. [Google Scholar] [CrossRef]
- Sokolov, I.E.; Efremova, E.I.; Boeva, N.M.; Kumskov, A.S.; Fomichev, V.V. Production of Single-Domain Powders of Europium Iron Garnet Using Supercritical Fluid Technology. J. Magn. Magn. Mater. 2022, 555, 169372. [Google Scholar] [CrossRef]
- Nesterov, N.S.; Paharukova, V.P.; Yakovlev, V.A.; Martyanov, O.N. The Facile Synthesis of Ni–Cu Catalysts Stabilized in SiO2 Framework via a Supercritical Antisolvent Approach. J. Supercrit. Fluids 2016, 112, 119–127. [Google Scholar] [CrossRef]
- Nesterov, N.S.; Shalygin, A.S.; Pakharukova, V.P.; Glazneva, T.S.; Martyanov, O.N. Mesoporous Aerogel-like Al-Si Oxides Obtained via Supercritical Antisolvent Precipitation of Alumina and Silica Sols. J. Supercrit. Fluids 2019, 149, 110–119. [Google Scholar] [CrossRef]
- Nesterov, N.S.; Smirnov, A.A.; Pakharukova, V.P.; Yakovlev, V.A.; Martyanov, O.N. Advanced Green Approaches for the Synthesis of NiCu-Containing Catalysts for the Hydrodeoxygenation of Anisole. Catal. Today 2021, 379, 262–271. [Google Scholar] [CrossRef]
- Philippov, A.A.; Nesterov, N.N.; Pakharukova, V.P.; Martyanov, O.N. High-Loaded Ni-Based Catalysts Obtained via Supercritical Antisolvent Coprecipitation in Transfer Hydrogenation of Anisole: Influence of the Support. Appl. Catal. A Gen. 2022, 643, 118792. [Google Scholar] [CrossRef]
- Philippov, A.; Nesterov, N.; Pakharukova, V.; Kozhevnikov, I.; Martyanov, O. Advanced High-Loaded Ni—Cu Catalysts in Transfer Hydrogenation of Anisole: Unexpected Effect of Cu Addition. Catalysts 2022, 12, 1307. [Google Scholar] [CrossRef]
- Nesterov, N.S.; Shalygin, A.S.; Pakharukova, V.P.; Martyanov, O.N. Coprecipitation of Au Clusters and Alumina Sol in Supercritical CO2—The Facile Way to Stabilize Gold Nanoparticles within Oxide Matrix. J. Sol-Gel Sci. Technol. 2019, 92, 523–528. [Google Scholar] [CrossRef]
- Nesterov, N.S.; Shalygin, A.S.; Glazneva, T.S.; Pakharukova, V.P.; Martyanov, O.N. The Facile Synthesis of Aerogel-like Alumina Highly-Loaded with Gold Nanoparticles. Gold Bull. 2021, 54, 69–74. [Google Scholar] [CrossRef]
- Nesterov, N.S.; Pakharukova, V.P.; Martyanov, O.N. Water as a Cosolvent—Effective Tool to Avoid Phase Separation in Bimetallic Ni-Cu Catalysts Obtained via Supercritical Antisolvent Approach. J. Supercrit. Fluids 2017, 130, 133–139. [Google Scholar] [CrossRef]
- Cherepanova, S.V.; Tsybulya, S.V. Simulation of X-Ray Powder Diffraction Patterns for One-Dimensionally Disordered Crystals. Mater. Sci. Forum 2004, 443–444, 87–90. [Google Scholar] [CrossRef]
- Kakinoki, J.; Komura, Y. Intensity of X-Ray Diffraction by an One-Dimensionally Disordered Crystal (1) General Derivation in Cases of the “Reichweite” S = 0 and 1. J. Phys. Soc. Jpn. 1952, 7, 30–35. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Nickolov, Z.; Georgiev, G.; Stoilova, D.; Ivanov, I. Raman and IR Study of Cobalt Acetate Dihydrate. J. Mol. Struct. 1995, 354, 119–125. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Ahmed, I.S. Hydrothermal Synthesis of Cobalt Carbonates Using Different Counter Ions: An Efficient Precursor to Nano-Sized Cobalt Oxide (Co3O4). Polyhedron 2011, 30, 2431–2437. [Google Scholar] [CrossRef]
- Marin, R.P.; Kondrat, S.A.; Pinnell, R.K.; Davies, T.E.; Golunski, S.; Bartley, J.K.; Hutchings, G.J.; Taylor, S.H. Green Preparation of Transition Metal Oxide Catalysts Using Supercritical CO2 Anti-Solvent Precipitation for the Total Oxidation of Propane. Appl. Catal. B Environ. 2013, 140–141, 671–679. [Google Scholar] [CrossRef]
- Wohlfabth, E.P. CI. Magnetic Properties of Nickel-Cobalt and Related Alloys. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1949, 40, 1095–1111. [Google Scholar] [CrossRef]
- Akulov, N.S. Über den Verlauf der Magnetisierungskurve in Starken Feldern. Z. Phys. 1931, 69, 822–831. [Google Scholar] [CrossRef]
- Cherepanova, S.V.; Bulavchenko, O.A.; Tsybulya, S.V. Structure of Nanocrystalline Particles of Metallic Cobalt Formed during the Reduction of Co3O4 Oxide. J. Struct. Chem. 2008, 49, 512–516. [Google Scholar] [CrossRef]
- Chakroune, N.; Viau, G.; Ricolleau, C.; Fiévet-Vincent, F.; Fiévet, F. Cobalt-Based Anisotropic Particles Prepared by the Polyol Process. J. Mater. Chem. 2003, 13, 312–318. [Google Scholar] [CrossRef]
- Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chem. Rev. 2018, 118, 11023–11117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.-Y.; Lizárraga, R.; Larsson, H.; Holmström, E.; Vitos, L. A First Principles Study of the Stacking Fault Energies for Fcc Co-Based Binary Alloys. Acta Mater. 2017, 136, 215–223. [Google Scholar] [CrossRef]
Sample | Phase | Lattice Parameter, Å | DXRD, nm | Phase | Lattice Parameter, Å | DXRD, nm | ||
---|---|---|---|---|---|---|---|---|
Co_W8 | Oxide Phases | Co3O4 | 8.088 | 13.0 | Metal Phases | hcp (defective structure) | a = b = 2.505, c = 4.070 | 25.0 (L002) |
Co2Ni1_W8 | Co3O4 or NiCo2O4 | 8.121 | 5.5 | hcp (defective structure) | a = b = 2.500, c = 4.070 | 24.0 (L002) | ||
Co1Ni1_W8 | NiO | 4.108 | 4.0 | ccp | 3.532 | - | ||
Co3O4 or NiCo2O4 | 8.130 | 4.5 | hcp (defective structure) | a = b = 2.498, c = 4.071 | 29.0 (L002) | |||
Co1Ni2_W8 | NiO | 4.129 | 4.0 | ccp | 3.536 | 24.0 | ||
Ni_W8 | NiO | 4.177 | 4.5 | ccp | 3.524 | 22.5 |
Sample | Phase | Lattice Parameter, Å | DXRD, nm | Phase | Lattice Parameter, Å | DXRD, nm | ||
---|---|---|---|---|---|---|---|---|
Co2Ni1_W0 | Oxide Phases | Co3O4 or NiCo2O4 | 8.115 | 6.0 | Metal Phases | hcp (defective structure) | a = b = 2.505, c = 4.060 | 20.0 (L002) |
ccp | 3.544 | 20.0 | ||||||
Co2Ni1_W4 | Co3O4 or NiCo2O4 | 8.112 | 6.5 | hcp (defective structure) | a = b = 2.503, c = 4.060 | 20.0 (L002) | ||
NiO | 4.185 | 6.0 | ccp | 3.544 | 20.0 | |||
Co2Ni1_W8 | Co3O4 or NiCo2O4 | 8.121 | 5.5 | hcp (defective structure) | a = b = 2.500, c = 4.070 | 24.0 (L002) |
Sample | Fraction of Cubic Stacking Mode, W2 (%) | Estimated Average Thicknesses of Fragments | |
---|---|---|---|
Lccp (nm) | Lhcp (nm) | ||
Co_W8 | 35 | 0.90 | 1.69 |
Co2Ni1_W8 | 43 | 0.90 | 1.19 |
Co2Ni1_W0 | 65 (type I) | 2.03 | 1.09 |
45 (type II) | 0.90 | 1.09 | |
Co1Ni1_W8 | 80 | 3.10 | 0.80 |
Co_AC | 27 | 1.16 | 3.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesterov, N.; Pakharukova, V.; Cherepanova, S.; Yakushkin, S.; Gerasimov, E.; Balaev, D.; Semenov, S.; Dubrovskii, A.; Martyanov, O. Synthesis of Co-Ni Alloy Particles with the Structure of a Solid Substitution Solution by Precipitation in a Supercritical Carbon Dioxide. Nanomaterials 2022, 12, 4366. https://doi.org/10.3390/nano12244366
Nesterov N, Pakharukova V, Cherepanova S, Yakushkin S, Gerasimov E, Balaev D, Semenov S, Dubrovskii A, Martyanov O. Synthesis of Co-Ni Alloy Particles with the Structure of a Solid Substitution Solution by Precipitation in a Supercritical Carbon Dioxide. Nanomaterials. 2022; 12(24):4366. https://doi.org/10.3390/nano12244366
Chicago/Turabian StyleNesterov, Nikolay, Vera Pakharukova, Svetlana Cherepanova, Stanislav Yakushkin, Evgeniy Gerasimov, Dmitry Balaev, Sergei Semenov, Andrey Dubrovskii, and Oleg Martyanov. 2022. "Synthesis of Co-Ni Alloy Particles with the Structure of a Solid Substitution Solution by Precipitation in a Supercritical Carbon Dioxide" Nanomaterials 12, no. 24: 4366. https://doi.org/10.3390/nano12244366
APA StyleNesterov, N., Pakharukova, V., Cherepanova, S., Yakushkin, S., Gerasimov, E., Balaev, D., Semenov, S., Dubrovskii, A., & Martyanov, O. (2022). Synthesis of Co-Ni Alloy Particles with the Structure of a Solid Substitution Solution by Precipitation in a Supercritical Carbon Dioxide. Nanomaterials, 12(24), 4366. https://doi.org/10.3390/nano12244366