Zincon-Modified CNTs Electrochemical Tool for Salivary and Urinary Zinc Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Zincon-Modified CNT
2.3. Materials Characterization
2.4. Statistics
3. Results and Discussion
3.1. Materials Characterizations
3.2. Electrochemical Behavior
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haraguchi, H. Metallomics: Integrated biometal science. In Metallomics; Springer: Tokyo, Japan, 2017; pp. 3–39. [Google Scholar]
- Szpunar, J. Metallomics: A new frontier in analytical chemistry. Anal. Bioanal. Chem. 2004, 378, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Mounicou, S.; Szpunar, J.; Lobinski, R. Metallomics: The concept and methodology. Chem. Soc. Rev. 2009, 38, 1119–1138. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Cheng, W.; Ji, C.; Zhang, J.; Yin, M. Detection of metal ions in biological systems: A review. Rev. Anal. Chem. 2020, 39, 231–246. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Anzellotti, A.I.; Farrell, N.P. Zinc metalloproteins as medicinal targets. Chem. Soc. Rev. 2008, 37, 1629–1651. [Google Scholar] [CrossRef]
- Prasad, A.S.; Kucuk, O. Zinc in cancer prevention. Cancer Metastasis Rev. 2002, 21, 291–295. [Google Scholar] [CrossRef]
- Grattan, B.J.; Freake, H.C. Zinc and cancer: Implications for LIV-1 in breast cancer. Nutrients 2012, 4, 648–675. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.J. Physiology of zinc: General aspects. In Zinc in Human Biology; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1–14. [Google Scholar]
- Chasapis, C.T.; Ntoupa, P.-S.A.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Xu, Z.; Cheng, X. Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biol. Med. 2020, 17, 612. [Google Scholar] [CrossRef]
- Murakami, M.; Hirano, T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 2008, 99, 1515–1522. [Google Scholar] [CrossRef]
- Farahani, H.; Alaee, M.; Amri, J.; Baghinia, M.-R.; Rafiee, M. Serum and Saliva Concentrations of Biochemical Parameters in Men with Prostate Cancer and Benign Prostate Hyperplasia. Lab. Med. 2020, 51, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Medarova, Z.; Ghosh, S.K.; Vangel, M.; Drake, R.; Moore, A. Risk stratification of prostate cancer patients based on EPS-urine zinc content. Am. J. Cancer Res. 2014, 4, 385. [Google Scholar] [PubMed]
- Schilling, K.; Moore, R.E.; Sullivan, K.V.; Capper, M.S.; Rehkämper, M.; Goddard, K.; Ion, C.; Coombes, R.C.; Vesty-Edwards, L.; Lamb, A.D. Zinc stable isotopes in urine as diagnostic for cancer of secretory organs. Metallomics 2021, 13, mfab020. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.R.; Babu, S.; Kumari, S.; Shetty, P.; Hegde, S.; Karikal, A. Status of trace elements in saliva of oral precancer and oral cancer patients. J. Cancer Res. Ther. 2015, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.M.; Zraiki, S.; Khayat, M.I. Evaluation of the salivary zinc assay as a potential diagnostic tool in potential malignant and malignant lesions of the oral cavity. J. Indian Acad. Oral Med. Radiol. 2019, 31, 293. [Google Scholar]
- Abdul-mounther, m. Evaluation of some trace elements in serum and urine from fe-males breast cancer (pre and post menopause) patients in missan city, iraq. Impact Int. J. Res. Appl. Nat. Soc. Sci. IMPACT IJRANSS 2016, 4, 191–200. [Google Scholar]
- Burton, C.; Dan, Y.; Donovan, A.; Liu, K.; Shi, H.; Ma, Y.; Bosnak, C.P. Urinary metallomics as a novel biomarker discovery platform: Breast cancer as a case study. Clin. Chim. Acta 2016, 452, 142–148. [Google Scholar] [CrossRef]
- Porto-Mascarenhas, E.C.; Assad, D.X.; Chardin, H.; Gozal, D.; Canto, G.D.L.; Acevedo, A.C.; Guerra, E.N.S. Salivary biomarkers in the diagnosis of breast cancer: A review. Crit. Rev. Oncol. Hematol. 2017, 110, 62–73. [Google Scholar] [CrossRef]
- Feng, Y.; Zeng, J.-W.; Ma, Q.; Zhang, S.; Tang, J.; Feng, J.-F. Serum copper and zinc levels in breast cancer: A meta-analysis. J. Trace Elem. Med. Biol. 2020, 62, 126629. [Google Scholar] [CrossRef]
- Schilling, K.; Larner, F.; Saad, A.; Roberts, R.; Kocher, H.M.; Blyuss, O.; Halliday, A.N.; Crnogorac-Jurcevic, T. Urine metallomics signature as an indicator of pancreatic cancer. Metallomics 2020, 12, 752–757. [Google Scholar] [CrossRef]
- Mirlohi, S.; Duncan, S.E.; Harmon, M.; Case, D.; Lesser, G.; Dietrich, A.M. Analysis of salivary fluid and chemosensory functions in patients treated for primary malignant brain tumors. Clin. Oral Investig. 2015, 19, 127–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callejón-Leblic, B.; Arias-Borrego, A.; Pereira-Vega, A.; Gómez-Ariza, J.L.; García-Barrera, T. The metallome of lung cancer and its potential use as biomarker. Int. J. Mol. Sci. 2019, 20, 778. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-N.; Wang, L.-H.; Shen, K.-H. Determining urinary trace elements (Cu, Zn, Pb, As, and Se) in patients with bladder cancer. J. Clin. Lab. Anal. 2009, 23, 192–195. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y. Saliva: A potential media for disease diagnostics and monitoring. Oral Oncol. 2012, 48, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Kudr, J.; Richtera, L.; Nejdl, L.; Xhaxhiu, K.; Vitek, P.; Rutkay-Nedecky, B.; Hynek, D.; Kopel, P.; Adam, V.; Kizek, R. Improved electrochemical detection of zinc ions using electrode modified with electrochemically reduced graphene oxide. Materials 2016, 9, 31. [Google Scholar] [CrossRef]
- Guo, X.; Lee, W.H.; Alvarez, N.; Shanov, V.N.; Heineman, W.R. Detection of trace zinc by an electrochemical microsensor based on carbon nanotube threads. Electroanalysis 2013, 25, 1599–1604. [Google Scholar] [CrossRef]
- March, G.; Nguyen, T.D.; Piro, B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 2015, 5, 241–275. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; Singh, P.; Singh, J.; Sachan, S.; Srivastava, S.; Singh, S.K. Nanocarbon-based electrochemical detection of heavy metals. Electroanalysis 2016, 28, 2472–2488. [Google Scholar] [CrossRef]
- Wang, J. Stripping analysis at bismuth electrodes: A review. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2005, 17, 1341–1346. [Google Scholar] [CrossRef]
- Guo, X.; Yun, Y.; Shanov, V.N.; Halsall, H.B.; Heineman, W.R. Determination of trace metals by anodic stripping voltammetry using a carbon nanotube tower electrode. Electroanalysis 2011, 23, 1252–1259. [Google Scholar] [CrossRef]
- Aragay, G.; Merkoçi, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61. [Google Scholar] [CrossRef]
- Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC Trends Anal. Chem. 2018, 105, 37–51. [Google Scholar] [CrossRef]
- Touati, A.; Benounis, M.; Boudjemaa, K.-E.; Barhoumi, H. New Modified EDTA-Selective Glassy Carbon Electrode for Detection of Zinc Ions in Real Water of Annaba (East Algeria). Sens. Lett. 2016, 14, 1138–1143. [Google Scholar] [CrossRef]
- Kokab, T.; Shah, A.; Iftikhar, F.J.; Nisar, J.; Akhter, M.S.; Khan, S.B. Amino acid-fabricated glassy carbon electrode for efficient simultaneous sensing of zinc (II), cadmium (II), copper (II), and mercury (II) ions. ACS Omega 2019, 4, 22057–22068. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Singh, C.K.; Sadak, O.; Ahmad, N.; Gunasekaran, S. Electrochemical detection of mobile zinc ions for early diagnosis of prostate cancer. J. Electroanal. Chem. 2019, 833, 269–274. [Google Scholar] [CrossRef]
- Säbel, C.E.; Neureuther, J.M.; Siemann, S. A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon. Anal. Biochem. 2010, 397, 218–226. [Google Scholar] [CrossRef]
- Vasanthi, S.; Devendiran, M.; Narayanan, S.S. A mercury free electrode for anodic stripping voltammetric determination of Pb (II) ions using poly zincon film modified electrode. Appl. Surf. Sci. 2017, 422, 138–146. [Google Scholar] [CrossRef]
- Aliabadi, M.H.; Esmaeili, N.; Jahromi, H.S. An electrochemical composite sensor for phenol detection in waste water. Appl. Nanosci. 2020, 10, 597–609. [Google Scholar] [CrossRef]
- Qin, W.; Liu, X.; Chen, H.; Yang, J. Amperometric sensors for detection of phenol in oilfield wastewater using electrochemical polymerization of zincon film. Anal. Methods 2014, 6, 5734–5740. [Google Scholar] [CrossRef]
- Vasanthi, S.; Kumar, K.K.; Narayanan, S.S. An amperometric sensor for the determination of dopamine using poly zincon film modified electrode. IJSRST 2018, 4, 751–757. [Google Scholar]
- Ensafi, A.A.; Rezaloo, F.; Rezaei, B. Electrochemical determination of fenitrothion organophosphorus pesticide using polyzincon modified-glassy carbon electrode. Electroanalysis 2017, 29, 2839–2846. [Google Scholar] [CrossRef]
- Ling, J.L.W.; Ab Ghani, S. Poly (4-vinylpyridine-co-aniline)-modified electrode—Synthesis, characterization, and application as cadmium (II) ion sensor. J. Solid State Electrochem. 2013, 17, 681–690. [Google Scholar] [CrossRef]
- Lo, M.; Ktari, N.; Gningue-Sall, D.; Madani, A.; Aaron, S.E.; Aaron, J.-J.; Mekhalif, Z.; Delhalle, J.; Chehimi, M.M. Polypyrrole: A reactive and functional conductive polymer for the selective electrochemical detection of heavy metals in water. Emergent Mater. 2020, 3, 815–839. [Google Scholar] [CrossRef]
- Marinho, B.; Ghislandi, M.; Tkalya, E.; Koning, C.E.; de With, G. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 2012, 221, 351–358. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Tang, Q.-Q.; Yang, D.; Hua, W.-M.; Yue, Y.-H.; Wang, B.-D.; Zhang, X.-H.; Hu, J.-H. Preparation of poly (p-styrenesulfonic acid) grafted multi-walled carbon nanotubes and their application as a solid-acid catalyst. Mater. Chem. Phys. 2011, 126, 310–313. [Google Scholar] [CrossRef]
- Zhu, Z. An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 2017, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Guo, Z.; Liu, J.-H.; Huang, X.-J. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 2012, 4, 1948–1963. [Google Scholar] [CrossRef]
- Teng, Y.; Ren, Z.; Zhang, Y.; Wang, Z.; Pan, Z.; Shao, K.; She, Y. Determination of prostate cancer marker Zn2+ with a highly selective surface-enhanced Raman scattering probe on liquid–liquid self-assembled Au nanoarrays. Talanta 2020, 209, 120569. [Google Scholar] [CrossRef]
- Pytko-Polonczyk, J.; Jakubik, A.; Przeklasa-Bierowiec, A.; Muszynska, B. Artificial saliva and its use in biological experiments. J. Physiol. Pharmacol. 2017, 68, 807–813. [Google Scholar]
- Safety Data Sheet—Urine-Artificial. Available online: https://www.aldon-chem.com/sds/urine-artificial-set-of-4.pdf (accessed on 30 November 2021).
- Qin, S.; Qin, D.; Ford, W.T.; Herrera, J.E.; Resasco, D.E.; Bachilo, S.M.; Weisman, R.B. Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate. Macromolecules 2004, 37, 3965–3967. [Google Scholar] [CrossRef]
- Atif, R.; Inam, F. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 2016, 7, 1174–1196. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fang, Y.; Ramasamy, R.P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors 2019, 19, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanei-Motlagh, M.; Fayazi, M.; Taher, M.A.; Darezereshki, E.; Jamalizadeh, E.; Fayazi, R. Novel modified magnetic nanocomposite for determination of trace amounts of lead ions. RSC Adv. 2015, 5, 100039–100048. [Google Scholar] [CrossRef]
- Li, Z.; Chang, X.; Hu, Z.; Huang, X.; Zou, X.; Wu, Q.; Nie, R. Zincon-modified activated carbon for solid-phase extraction and preconcentration of trace lead and chromium from environmental samples. J. Hazard. Mater. 2009, 166, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Wibawa, P.J.; Nur, M.; Asy’ari, M.; Nur, H. SEM, XRD and FTIR analyses of both ultrasonic and heat generated activated carbon black microstructures. Heliyon 2020, 6, e03546. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Davis, J.J. Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev. 2013, 42, 5944–5962. [Google Scholar] [CrossRef] [PubMed]
- Klumpp, C.; Kostarelos, K.; Prato, M.; Bianco, A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta BBA-Biomembr. 2006, 1758, 404–412. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes. Small 2005, 1, 180–192. [Google Scholar] [CrossRef]
- Munaiah, Y.; Suresh, S.; Dheenadayalan, S.; Pillai, V.K.; Ragupathy, P. Comparative Electrocatalytic performance of single-walled and multiwalled carbon nanotubes for zinc bromine redox flow batteries. J. Phys. Chem. C 2014, 118, 14795–14804. [Google Scholar] [CrossRef]
- Yan, Y.; Kou, B.; Yan, L. Thread-based microfluidic three channel device in combination with thermal lens detection for the determination of copper and zinc. Anal. Methods 2015, 7, 8757–8762. [Google Scholar] [CrossRef]
- Karatepe, A.; Soylak, M.; Elçi, L. Determination of Cu, Fe, and Ni in Spices after Preconcentration on Diaion-HP 20 Resin as Their Zincon Complexes. Clean–Soil Air Water 2011, 39, 502–507. [Google Scholar] [CrossRef]
- Herman, M.; Golasik, M.; Piekoszewski, W.; Walas, S.; Napierala, M.; Wyganowska-Swiatkowska, M.; Kurhanska-Flisykowska, A.; Wozniak, A.; Florek, E. Essential and toxic metals in oral fluid–a potential role in the diagnosis of periodontal diseases. Biol. Trace Elem. Res. 2016, 173, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seanghirun, W.; Samoson, K.; Cotchim, S.; Kongkaew, S.; Limbut, W. Green electrochemical sensor for Zn (II) ions detection in human seminal fluid. Microchem. J. 2020, 157, 104958. [Google Scholar] [CrossRef]
- Yue, W.; Bange, A.; Riehl, B.L.; Johnson, J.M.; Papautsky, I.; Heineman, W.R. The application of nafion metal catalyst free carbon nanotube modified gold electrode: Voltammetric zinc detection in serum. Electroanalysis 2013, 25, 2259–2267. [Google Scholar] [CrossRef] [Green Version]
- Nikolaev, K.G.; Kalmykov, E.V.; Shavronskaya, D.O.; Nikitina, A.A.; Stekolshchikova, A.A.; Kosareva, E.A.; Zenkin, A.A.; Pantiukhin, I.S.; Orlova, O.Y.; Skalny, A.V. ElectroSens platform with a polyelectrolyte-based carbon fiber sensor for point-of-care analysis of Zn in blood and urine. ACS Omega 2020, 5, 18987–18994. [Google Scholar] [CrossRef]
Cancer | Salivary Zinc (ng·mL−1) | Urinary Zinc (ng·mL−1) | Reference(s) | ||
---|---|---|---|---|---|
Healthy * | Unhealthy * | Healthy * | Unhealthy * | ||
Prostate | ~270 | ~630 | ~400 | ~675 | [7,8,9,20] |
Oral | ~360 | ~150 | - | - | [10,11] |
Breast | ~600 | ~1010 | ~320 | ~602 | [9,12,13,14,15] |
Pancreatic | - | - | ~400 | ~945 | [9,16] |
Brain | ~540 | ~410 | - | - | [17] |
Lung | - | - | ~570 | ~1500 | [18] |
Bladder | - | - | ~470 | ~1000 | [19] |
Artificial Saliva (g/L) [51] | Artificial Urine (g/L) [52] | ||
---|---|---|---|
Sodium Chloride | 1.594 | Urea | 25 |
Ammonium Nitrate | 0.328 | Sodium Chloride | 9 |
Potassium Phosphate | 0.636 | Disodium Hydrogen orthophosphate | 2.5 |
Potassium Chloride | 0.202 | Potassium dihydrogen orthophosphate | 2.5 |
Potassium Citrate | 0.308 | Ammonium chloride | 3 |
Uric Acid Sodium Salt | 0.021 | Creatinine | 2 |
Urea | 0.198 | Sodium sulphite | 3 |
Lactic Acid Sodium Salt | 0.146 | ||
Mucin | 5 |
Strategy | Range of Detection (ng·mL−1) | LOD (ng·mL−1) | Disadvantages | Sample | Ref. |
---|---|---|---|---|---|
Bismuth-Graphene Oxide | 20–8000 | 6 (buffer) | In situ bismuth co-deposition/Zinc needs extra extraction steps | Seminal Fluid | [67] |
Zincon exfoliated graphite | 250–1500 | 5 (buffer) | Zinc needs extra extraction steps | Serum | [37] |
Nafion-Gold electrode | 180–2500 | 18 (buffer) | Zinc needs extra extraction steps | Serum | [68] |
Polyethyleneimine, poly (sodium 4-styrenesulfonate), and mercury nitrate on Carbon fibers | 20–2000 | 9 (buffer) | Use of mercury compound (toxic) | Blood and Urine | [69] |
Zincon-modified CNT | 125–1000 | 15 (buffer) 20 (urine) 30 (saliva) | Saliva and Urine | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, D.; Allard, J.; Taylor, K.; Harvey, E.J.; Merle, G. Zincon-Modified CNTs Electrochemical Tool for Salivary and Urinary Zinc Detection. Nanomaterials 2022, 12, 4431. https://doi.org/10.3390/nano12244431
Vieira D, Allard J, Taylor K, Harvey EJ, Merle G. Zincon-Modified CNTs Electrochemical Tool for Salivary and Urinary Zinc Detection. Nanomaterials. 2022; 12(24):4431. https://doi.org/10.3390/nano12244431
Chicago/Turabian StyleVieira, Daniela, Jérôme Allard, Kathleen Taylor, Edward J. Harvey, and Geraldine Merle. 2022. "Zincon-Modified CNTs Electrochemical Tool for Salivary and Urinary Zinc Detection" Nanomaterials 12, no. 24: 4431. https://doi.org/10.3390/nano12244431
APA StyleVieira, D., Allard, J., Taylor, K., Harvey, E. J., & Merle, G. (2022). Zincon-Modified CNTs Electrochemical Tool for Salivary and Urinary Zinc Detection. Nanomaterials, 12(24), 4431. https://doi.org/10.3390/nano12244431