Optical Properties of V2O5 Thin Films on Different Substrates and Femtosecond Laser-Induced Phase Transition Studied by Pump–Probe Method
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparation
2.2. Experimental Setup
3. Results and Discussion
3.1. Optical Characteristics
3.2. Component and Valence
3.3. Surface Topography
3.4. Electrical Performance
3.5. Ultrafast Nonlinear Optical Response Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawakubo, T.; Nakagawa, T. Phase transition in VO2. J. Phys. Soc. Jpn. 1964, 19, 517–519. [Google Scholar] [CrossRef]
- Kim, H.-T.; Chae, B.G.; Youn, D.-H.; Kim, G.; Kang, K.-Y.; Lee, S.-J.; Kim, K.; Lim, Y.-S. Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices. Appl. Phys. Lett. 2005, 86, 242101. [Google Scholar] [CrossRef]
- Cavalleri, A.; Tóth, C.; Siders, C.W.; Squier, J.A.; Ráksi, F.; Forget, P.; Kieffer, J.C. Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. Phys. Rev. Lett. 2001, 87, 237401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.; Kim, I.; Kim, S.W.; Ryu, J.-W.; Park, H.Y. Metal-insulator transition without structural phase transition in V2O5 film. Appl. Phys. Lett. 2011, 98, 131907. [Google Scholar] [CrossRef]
- Pérez-Pacheco, A.; Acosta-Najarro, D.R.; Castañeda-Guzmán, R.; Cruz-Manjarrez, H.; Rodríguez-Fernández, L.; Pineda-Santamaría, J.C.; Aguilar-Franco, M. Evidence of the semiconductor-metal transition in V2O5 thin films by the pulsed laser photoacoustic method. J. Appl. Phys. 2013, 113, 184307. [Google Scholar] [CrossRef]
- Kang, M.; Kim, S.W.; Hwang, Y.; Um, Y.; Ryu, J.-W. Temperature dependence of the interband transition in a V2O5 film. AIP Adv. 2013, 3, 052129. [Google Scholar] [CrossRef] [Green Version]
- Nadkarni, G.S.; Shirodkar, V.S. Experiment and theory for switching in Al/V2O5/Al devices. Thin Solid Films 1983, 105, 115–129. [Google Scholar] [CrossRef]
- Blum, R.-P.; Niehus, H.; Hucho, C.; Fortrie, R.; Ganduglia-Pirovano, M.V.; Sauer, J.; Shaikhutdinov, S.; Freund, H.-J. Surface Metal-Insulator Transition on a Vanadium Pentoxide (001) Single Crystal. Phys. Rev. Lett. 2007, 99, 226103. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Luo, Y.; Zhang, D.; Luo, F. Dynamic optical limiting experiments on vanadium dioxide and vanadium pentoxide thin films irradiated by a laser beam. Appl. Opt. 2006, 45, 3378–3381. [Google Scholar] [CrossRef]
- Smith, R.L.; Rohrer, G.; Lee, K.; Seo, D.-K.; Whangbo, M.-H. A scanning probe microscopy study of the (001) surfaces of V2O5 and V6O13. Surf. Sci. 1996, 367, 87–95. [Google Scholar] [CrossRef]
- Santos, R.; Loureiro, J.; Nogueira, A.; Elangovan, E.; Pinto, J.; Veiga, J.; Busani, T.; Fortunato, E.; Martins, R.; Ferreira, I. Thermoelectric properties of V2O5 thin films deposited by thermal evaporation. Appl. Surf. Sci. 2013, 282, 590–594. [Google Scholar] [CrossRef]
- Sahana, M.; Sudakar, C.; Thapa, C.; Lawes, G.; Naik, V.; Baird, R.; Auner, G.; Naik, R.; Padmanabhan, K. Electrochemical properties of V2O5 thin films deposited by spin coating. Mater. Sci. Eng. B 2007, 143, 42–50. [Google Scholar] [CrossRef]
- Ramana, C.V.; Smith, R.J.; Hussain, O.M.; Chusuei, C.C.; Julien, C.M. Correlation between Growth Conditions, Microstructure, and Optical Properties in Pulsed-Laser-Deposited V2O5 Thin Films. Chem. Mater. 2005, 17, 1213–1219. [Google Scholar] [CrossRef]
- Iida, Y.; Kaneko, Y.; Kanno, Y. Fabrication of pulsed-laser deposited V2O5 thin films for electrochromic devices. J. Mater. Process. Technol. 2008, 197, 261–267. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Hu, J.; Cai, P.; Lv, Y. A cataluminescence gas sensor based on nanosized V2O5 for tert-butyl mercaptan. Talanta 2010, 82, 733–738. [Google Scholar] [CrossRef]
- Kim, G.T.; Muster, J.; Krstic, V.; Park, J.G.; Park, Y.W.; Roth, S.; Burghard, M. Field-effect transistor made of individual V2O5 nanofibers. Appl. Phys. Lett. 2000, 76, 1875–1877. [Google Scholar] [CrossRef]
- Jeyalakshmi, K.; Vijayakumar, S.; Purushothaman, K.; Muralidharan, G. Nanostructured nickel doped β-V2O5 thin films for supercapacitor applications. Mater. Res. Bull. 2013, 48, 2578–2582. [Google Scholar] [CrossRef]
- Raman, M.S.; Kumar, N.S.; Chandrasekaran, J.; Priya, R.; Baraneedharan, P.; Chavali, M. Thermal annealing effects on structural, optical and electrical properties of V2O5 nanorods for photodiode application. Optik 2018, 157, 410–420. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, Y.; Sun, S.; Lai, T. Phase Change Behavior and Multi-Level Storage for V2O5 Thin Film in Phase-Change Memory Application. ECS J. Solid State Sci. Technol. 2020, 9, 073001. [Google Scholar] [CrossRef]
- Julien, C.; Haro-Poniatowski, E.; Camacho-López, M.; Escobar-Alarcón, L.; Jímenez-Jarquín, J. Growth of V2O5 thin films by pulsed laser deposition and their applications in lithium microbatteries. Mater. Sci. Eng. B 1999, 65, 170–176. [Google Scholar] [CrossRef]
- Ramana, C.V.; Naidu, B.S.; Hussain, O.M.; Pinto, R. Low-temperature growth of vanadium pentoxide thin films produced by pulsed laser ablation. J. Phys. D Appl. Phys. 2001, 34, L35–L38. [Google Scholar] [CrossRef]
- Liu, L.M.; Mo, J.H.; Shi, Y.L.; Zeng, H.R.; Yang, P.Z. Structure and property study on vanadium oxide thin films deposited by radio frequency magnetron sputtering technique. Infrared Technol. 2012, 5, 260–264. [Google Scholar]
- Liu, Y.; Chen, Q.; Du, X.; Liu, X.; Li, P. Effects of substrate on the structure and properties of V2O5 thin films prepared by the sol-gel method. AIP Adv. 2019, 9, 045028. [Google Scholar] [CrossRef] [Green Version]
- Irani, R.; Rozati, S.; Beke, S. Structural and optical properties of nanostructural V2O5 thin films deposited by spray pyrolysis technique: Effect of the substrate temperature. Mater. Chem. Phys. 2013, 139, 489–493. [Google Scholar] [CrossRef]
- Beebe, M.R.; Klopf, J.M.; Wang, Y.; Kittiwatanakul, S.; Lu, J.; Wolf, S.A.; Lukaszew, R.A. Time-resolved light-induced insulator-metal transition in niobium dioxide and vanadium dioxide thin films. Opt. Mater. Express 2016, 7, 213. [Google Scholar] [CrossRef]
- Liu, H.W.; Wong, L.M.; Wang, S.; Tang, S.H.; Zhang, X.H. Ultrafast insulator–metal phase transition in vanadium dioxide studied using optical pump–terahertz probe spectroscopy. J. Phys. Condens. Matter 2012, 24, 415604. [Google Scholar] [CrossRef]
- Holleman, J.; Bishop, M.M.; Garcia, C.; Winfred, J.S.R.V.; Lee, S.; Lee, H.N.; Beekman, C.; Manousakis, E.; McGill, S.A. Evidence for impact ionization in vanadium dioxide. Phys. Rev. B 2016, 94, 155129. [Google Scholar] [CrossRef] [Green Version]
- Benmoussa, M.; Ibnouelghazi, E.; Bennouna, A.; Ameziane, E. Structural, electrical and optical properties of sputtered vanadium pentoxide thin films. Thin Solid Films 1995, 265, 22–28. [Google Scholar] [CrossRef]
- Kang, M.; Chu, M.; Kim, S.W.; Ryu, J.-W. Optical and electrical properties of V2O5 nanorod films grown using an electron beam. Thin Solid Films 2013, 547, 198–201. [Google Scholar] [CrossRef]
- Gandasiri, R.; Sreelatha, C.; Nagaraju, P.; Vijayakumar, Y. Effect of annealing temperature on micro-structural, optical and electrical characterization of nanostructured V2O5 thin films prepared by spray pyrolysis technique. Phys. B Condens. Matter 2019, 572, 220–224. [Google Scholar] [CrossRef]
- Cao, Z. (Ed.) Thin Film Growth: Physics, Materials Science and Applications; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Beke, S. A review of the growth of V2O5 films from 1885 to 2010. Thin Solid Films 2011, 519, 1761–1771. [Google Scholar] [CrossRef]
- Becker, M.F.; Buckman, A.B.; Walser, R.M.; Lépine, T.; Georges, P.; Brun, A. Femtosecond laser excitation dynamics of the semiconductor-metal phase transition in VO2. J. Appl. Phys. 1996, 79, 2404–2408. [Google Scholar] [CrossRef] [Green Version]
- Cavalleri, A.; Dekorsy, T.; Chong, H.H.W.; Kieffer, J.C.; Schoenlein, R.W. Evidence for a structurally-driven insulator-to-metal transition inVO2: A view from the ultrafast timescale. Phys. Rev. B 2004, 70, 161102. [Google Scholar] [CrossRef] [Green Version]
- Lysenko, S.; Vikhnin, V.; Rua, A.; Fernandez, F.; Liu, H. Photoinduced Solid Phase Transformation in Vanadium Dioxide Films. In MRS Proceedings; Cambridge University Press: Cambridge, UK, 2005; Volume 905, p. 905. [Google Scholar]
- Radue, E.; Wang, L.; Kittiwatanakul, S.; Lu, J.; Wolf, S.A.; Rossi, E.; Lukaszew, R.A.; Novikova, I. Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films. J. Opt. 2015, 17, 025503. [Google Scholar] [CrossRef] [Green Version]
- Hilton, D.J.; Prasankumar, R.P.; Fourmaux, S.; Cavalleri, A.; Brassard, D.; El Khakani, M.A.; Kieffer, J.C.; Taylor, A.J.; Averitt, R.D. Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide. Phys. Rev. Lett. 2007, 99, 226401. [Google Scholar] [CrossRef] [Green Version]
- Cocker, T.L.; Titova, L.V.; Fourmaux, S.; Holloway, G.; Bandulet, H.; Brassard, D.; Kieffer, J.-C.; El Khakani, M.A.; Hegmann, F.A. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide. Phys. Rev. B 2012, 85, 155120. [Google Scholar] [CrossRef]
V2O5 Samples | Sample 1 | Sample 2 | Sample 3 |
---|---|---|---|
Substrates | Al2O3 | MgO | SiO2 |
Energy intensity (mJ/cm2) | 0.0622 | 0.0622 | 0.0622 |
Phase transition time t1 (fs) | 160 | 200 | 200 |
Initial transmittance T1 (%) | 79 | 85 | 80 |
Phase transition transmittance T2 (%) | 65 | 47 | 60 |
T1 − T2 (%) | 14 | 38 | 20 |
V2O5 Samples | Sample 1 | Sample 2 | Sample 3 |
---|---|---|---|
Substrates | Al2O3 | MgO | SiO2 |
Energy intensity (mJ/cm2) | 0.0622 | 0.0622 | 0.0622 |
A | 243.60 | −15.39 | −4.60 |
B | 0.0028 | −0.3979 | −0.6398 |
C | −169.20 | 86.75 | 80.93 |
Recovery time t2 (ps) | 200 | 150 | 100 |
Recovery transmittance T3 (%) | 78 | 84 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, Y.; Yang, G.; Li, Y.; Wang, Y.; Shi, Q.; Cheng, G. Optical Properties of V2O5 Thin Films on Different Substrates and Femtosecond Laser-Induced Phase Transition Studied by Pump–Probe Method. Nanomaterials 2022, 12, 330. https://doi.org/10.3390/nano12030330
Lan Y, Yang G, Li Y, Wang Y, Shi Q, Cheng G. Optical Properties of V2O5 Thin Films on Different Substrates and Femtosecond Laser-Induced Phase Transition Studied by Pump–Probe Method. Nanomaterials. 2022; 12(3):330. https://doi.org/10.3390/nano12030330
Chicago/Turabian StyleLan, Yu, Guowen Yang, Yangping Li, Yuheng Wang, Qianqian Shi, and Guanghua Cheng. 2022. "Optical Properties of V2O5 Thin Films on Different Substrates and Femtosecond Laser-Induced Phase Transition Studied by Pump–Probe Method" Nanomaterials 12, no. 3: 330. https://doi.org/10.3390/nano12030330
APA StyleLan, Y., Yang, G., Li, Y., Wang, Y., Shi, Q., & Cheng, G. (2022). Optical Properties of V2O5 Thin Films on Different Substrates and Femtosecond Laser-Induced Phase Transition Studied by Pump–Probe Method. Nanomaterials, 12(3), 330. https://doi.org/10.3390/nano12030330