Indium Tin Oxide Nanowire Arrays as a Saturable Absorber for Mid-Infrared Er:Ca0.8Sr0.2F2 Laser
Abstract
:1. Introduction
2. Materials and Methods
3. Experiment and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qian, J.; Peng, Y.; Li, Y.; Li, W.; Feng, R.; Shen, L.; Leng, Y. Research progress of mid-infrared ultra-intense and ultrashort laser (Invited). Infrared Laser Eng. 2021, 50, 20210456. [Google Scholar]
- Dai, Y.; Li, Y.; Xu, Y.; Zou, X.; Dong, Y.; Leng, Y. High-Efficiency Broadly Tunable Cr:ZnSe Single Crystal Laser Pumped by Tm:YLF Laser. In Proceedings of the Advanced Solid-State Lasers Congress, Paris, France, 27 October 2013; p. AM4A.36. [Google Scholar]
- Jackson, K.; Ebrahim-Zadeh, M.; Helmy, A.S.; Leo, G.; Schunemann, P.G. Mid-Infrared Coherent Sources and Applications: Introduction. J. Opt. Soc. Am. B 2021, 38, MIC1. [Google Scholar] [CrossRef]
- Frauchiger, J.; Lüthy, W. Interaction of 3 μm radiation with matter. Opt. Quantum Electron. 1987, 19, 231–236. [Google Scholar] [CrossRef]
- Ma, J.; Qin, Z.; Xie, G.; Qian, L.; Tang, D. Review of mid-infrared mode-locked laser sources in the 2.0–3.5 μm spectral region. Appl. Phys. Rev. 2019, 6, 021317. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Jiang, B.; Fan, J.; Yuan, X.; Long, Z. Review of Mid-Infrared Laser Materials Directly Pumped by Laser-Diode. Laser Optoelectron. Prog. 2015, 52, 020001. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Jiang, S.; Xu, S.; Ma, W.; Wang, J.; Xu, X.; Su, L. 2.8 μm passively Q-switched Er:CaF2 diode-pumped laser. OPT. Mater. Express 2016, 6, 1570–1575. [Google Scholar] [CrossRef]
- Catlow, C.R.A.; Chadwick, A.V.; Greaves, G.N.; Moroney, L.M. Direct observations of the dopant environment in fluorites using EXAFS. Nature 1984, 312, 601–604. [Google Scholar] [CrossRef]
- Labbe, C.; Doualan, J.L.; Camy, P.; Moncorgé, R.; Thuau, M. The 2.8 μm laser properties of Er3+ doped CaF2 crystals. Opt. Commun. 2002, 209, 193–199. [Google Scholar] [CrossRef]
- Pollack, S.A.; Chang, D.B. Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals. J. Appl. Phys. 1988, 64, 2885–2893. [Google Scholar] [CrossRef]
- Ma, W.; Su, L.; Xu, X.; Wang, J.; Jiang, D.; Zheng, L.; Fan, X.; Li, C.; Liu, J.; Xu, J. Effect of erbium concentration on spectroscopic properties and 2.79 μm laser performance of Er:CaF2 crystals. Opt. Mater. Express 2016, 6, 409–415. [Google Scholar] [CrossRef]
- Ponader, C.W.; Youngman, R.E.; Smith, C.M. Structural Studies of (Ca,Sr)F2 Single Crystals with Raman and NMR Spectroscopies. J. Am. Ceram. Soc. 2005, 88, 2447–2450. [Google Scholar] [CrossRef]
- Fornasiero, L.; Mix, E.; Peters, V.; Petermann, K.; Huber, G. New Oxide Crystals for Solid State Lasers. Cryst. Res. Technol. 1999, 34, 255–260. [Google Scholar] [CrossRef]
- Wang, G.; Peng, Q.; Li, Y. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 2009, 131, 14200–14201. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, F.; Zhang, Z.; Liu, J.; Zhang, H.; Su, L. Watt-level continuous-wave and high-repetition-rate mid-infrared lasers based on a Er3+-doped Ca0.8Sr0.2F2 crystal. Appl. Phys. Express 2019, 12, 115505. [Google Scholar] [CrossRef]
- Zong, M.; Yang, X.; Liu, J.; Zhang, Z.; Jiang, S.; Liu, J.; Su, L. Er:CaF2 single-crystal fiber Q-switched laser with diode pumping in the mid-infrared region. J. Lumin. 2020, 227, 117519. [Google Scholar] [CrossRef]
- Hao, Q.; Wang, C.; Liu, W.; Liu, X.; Liu, J.; Zhang, H. Low-dimensional saturable absorbers for ultrafast photonics in solid-state bulk lasers: Status and prospects. Nanophotonics 2020, 9, 2603–2639. [Google Scholar] [CrossRef]
- Shimada, T.; Minaguro, K.; Xu, T.; Wang, J.; Kitamura, T. Ab Initio Study of Ferroelectric Critical Size of SnTe Low-Dimensional Nanostructures. Nanomaterials 2020, 10, 732. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jhon, Y.I.; Lee, K.; Lee, J.H. Nonlinear optical properties of arsenic telluride and its use in ultrafast fiber lasers. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Yang, L.; Xie, C.; Jin, J.; Ali, R.N.; Feng, C.; Liu, P.; Xiang, B. Properties, Preparation and Applications of Low Dimensional Transition Metal Dichalcogenides. Nanomaterials 2018, 8, 463. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Lee, J.; Park, J.; Koo, J.; Jhon, Y.M.; Lee, J.H. Mode-locked, 1.94 μm, all-fiberized laser using WS2-based evanescent field interaction. Opt. Express 2015, 23, 19996–20006. [Google Scholar] [CrossRef]
- Rosol, A.H.A.; Jafry, A.A.A.; Nizamani, B.; Zulkipli, N.F.; Khudus, M.I.M.A.; Yasin, M.; Harun, S.W. MXene Ti3C2Tx thin film as a saturable absorber for passively mode-locked and Q-switched fibre laser. J. Mod. Opt. 2021, 68, 984–993. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Koo, J.; Anasori, B.; Seo, M.; Lee, J.H.; Gogotsi, Y.; Jhon, Y.M. Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers. Adv. Mater. 2017, 29, 1702496. [Google Scholar] [CrossRef] [PubMed]
- Bühler, G.; Thölmann, D.; Feldmann, C. One-Pot Synthesis of Highly Conductive Indium Tin Oxide Nanocrystals. Adv. Mater. 2007, 19, 2224–2227. [Google Scholar] [CrossRef]
- Davis, M.; Zhang, K.; Wang, S.; Hope-Weeks, L.J. Enhanced electrical conductivity in mesoporous 3D indium-tin oxide mate-rials. J. Mater. Chem. 2012, 22, 20163–20165. [Google Scholar] [CrossRef]
- Guo, Q.; Cui, Y.; Yao, Y.; Ye, Y.; Yang, Y.; Liu, X.; Zhang, S.; Liu, X.; Qiu, J.; Hosono, H. A Solution-Processed Ultrafast Optical Switch Based on a Nanostructured Epsilon-Near-Zero Medium. Adv. Mater. 2017, 29, 1700754. [Google Scholar] [CrossRef]
- Engheta, N. Pursuing Near-Zero Response. Science 2013, 340, 286–287. [Google Scholar] [CrossRef]
- Liberal, I.; Engheta, N. The rise of near-zero-index technologies. Science 2017, 358, 1540–1541. [Google Scholar] [CrossRef]
- Alam, M.Z.; De Leon, I.; Boyd, R.W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797. [Google Scholar] [CrossRef]
- Emons, T.T.; Li, J.; Nazar, L.F. Synthesis and Characterization of Mesoporous Indium Tin Oxide Possessing an Electronically Conductive Framework. J. Am. Chem. Soc. 2002, 124, 8516–8517. [Google Scholar] [CrossRef]
- Wang, H.-W.; Ting, C.-F.; Hung, M.-K.; Chiou, C.-H.; Liu, Y.-L.; Liu, Z.; Ratinac, K.R.; Ringer, S.P. Three-dimensional electrodes for dye-sensitized solar cells: Synthesis of indium–tin-oxide nanowire arrays and ITO/TiO2 core–shell nanowire arrays by electrophoretic deposition. Nanotechnology 2009, 20, 055601. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.K.; Kihm, K.D.; English, A.E. Optoelectric biosensor using indium-tin-oxide electrodes. Opt. Lett. 2007, 32, 1405–1407. [Google Scholar] [CrossRef] [PubMed]
- López, M.; Frieiro, J.L.; Nuez-Martínez, M.; Pedemonte, M.; Palacio, F.; Teixidor, F. Nanostructure ITO and Get More of It. Better Performance at Lower Cost. Nanomaterials 2020, 10, 1974. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, H.; Li, Z.; Sheng, Y.; Guo, Q.; Han, X.; Liu, Y.; Man, B.; Ning, T.; Jiang, S. Dark solitons in erbium-doped fiber lasers based on indium tin oxide as saturable absorbers. Opt. Mater. 2018, 78, 432–437. [Google Scholar] [CrossRef]
- Nizamani, B.; Jafry, A.; Khudus, M.A.; Memon, F.; Shuhaimi, A.; Kasim, N.; Hanafi, E.; Yasin, M.; Harun, S. Indium tin oxide coated D-shape fiber as saturable absorber for passively Q-switched erbium-doped fiber laser. Opt. Laser Technol. 2020, 124, 105998. [Google Scholar] [CrossRef]
- Nizamani, B.; Salam, S.; Jafry, A.A.A.; Zahir, N.M.; Jurami, N.; Khudus, M.I.M.A.; Shuhaimi, A.; Hanafi, E.; Harun, S.W. Indium Tin Oxide Coated D-Shape Fiber as a Saturable Absorber for Generating a Dark Pulse Mode-Locked Laser. Chin. Phys. Lett. 2020, 37, 054202. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.; Zhang, C.; Li, Z.; Sheng, Y.; Li, C.; Bao, X.; Man, B.; Jiao, Y.; Jiang, S. Indium tin oxide nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber laser. Opt. Mater. Express 2017, 7, 3494–3502. [Google Scholar] [CrossRef]
- Nizamani, B.; Jafry, A.; Salam, S.; Najm, M.M.; Khudus, M.A.; Hanafi, E.; Harun, S. Mechanical exfoliation of indium tin oxide as saturable absorber for Q-switched Ytterbium-doped and Erbium-doped fiber lasers. Opt. Commun. 2020, 475, 126217. [Google Scholar] [CrossRef]
- Nizamani, B.; Jafry, A.A.A.; Khudus, M.A.; Rosol, A.; Samsamnun, F.; Kasim, N.; Hanafi, E.; Shuhaimi, A.; Harun, S. Mode-locked erbium-doped fiber laser via evanescent field interaction with indium tin oxide. Opt. Fiber Technol. 2020, 55, 102124. [Google Scholar] [CrossRef]
- Zalkepali, N.; Awang, N.; Latif, A.; Zakaria, Z.; Yuzaile, Y.; Mahmud, N. Switchable dual-wavelength Q-switched fiber laser based on sputtered indium tin oxide as saturable absorber. Results Phys. 2020, 17, 103187. [Google Scholar] [CrossRef]
- Zalkepali, N.U.H.H.; Awang, N.A.; Yuzaile, Y.R.; Zakaria, Z.; Latif, A.A.; Ali, A.H.; Mahmud, N.N.H.E. Tunable indium tin oxide thin film as saturable absorber for generation of passively Q-switched pulse erbium-doped fiber laser. Indian J. Phys. 2021, 95, 733–739. [Google Scholar] [CrossRef]
- Guo, Q.; Pan, J.; Li, D.; Shen, Y.; Han, X.; Gao, J.; Man, B.; Zhang, H.; Jiang, S. Versatile Mode-Locked Operations in an Er-Doped Fiber Laser with a Film-Type Indium Tin Oxide Saturable Absorber. Nanomaterials 2019, 9, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Liu, J.; Yang, W.; Yu, X.; Jiang, S.; Ning, T.; Liu, J. Broadband indium tin oxide nanowire arrays as saturable absorbers for solid-state lasers. Opt. Express 2020, 28, 1554–1560. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Xie, G.; Zhang, H.; Zhao, C.; Yuan, P.; Wen, S.; Qian, L. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm. Opt. Express 2015, 23, 24713–24718. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Li, T.; Zhao, S.; Li, G.; Ma, H.; Gao, X.; Kränkel, C.; Huber, G. Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 μm using MoS2. Opt. Lett. 2016, 41, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Qin, Z.; Xie, G.; Guo, Z.; Zhang, H.; Yuan, P.; Qian, L. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength. Laser Phys. Lett. 2016, 13, 045801. [Google Scholar] [CrossRef] [Green Version]
- You, Z.; Sun, Y.; Sun, D.; Zhu, Z.; Wang, Y.; Li, J.; Tu, C.; Xu, J. High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA. Opt. Lett. 2017, 42, 871–874. [Google Scholar] [CrossRef]
- Liu, J.; Huang, H.; Zhang, F.; Zhang, Z.; Liu, J.; Zhang, H.; Su, L. Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser. Photon- Res. 2018, 6, 762–767. [Google Scholar] [CrossRef]
- Guan, X.; Zhan, L.; Zhu, Z.; Xu, B.; Xu, H.; Cai, Z.; Cai, W.; Xu, X.; Zhang, J.; Xu, J. Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7 μm. Appl. Opt. 2018, 57, 371–376. [Google Scholar] [CrossRef]
- Hao, Q.; Zong, M.; Zhang, Z.; Huang, H.; Zhang, F.; Liu, J.; Liu, D.; Su, l.; Zhang, H. Bismuth nanosheets based saturable-absorption passively Q-switching mid-infrared single-crystal fiber laser. Acta Phys. Sin. 2020, 69, 184205. [Google Scholar] [CrossRef]
- Feng, C.; Qiao, W.; Liu, Y.; Huang, J.; Liang, Y.; Zhao, Y.; Song, Y.; Li, T. Modulation of MXene Nb2CTx saturable absorber for passively Q-switched 2.85 µm Er:Lu2O3 laser. Opt. Lett. 2021, 46, 1385–1388. [Google Scholar] [CrossRef]
Transmittance of the OC | Output Power/mW | Shortest Pulse Width/ns | Repetition Rate/kHz | Peak Power/W | Single Pulse Energy/μJ |
---|---|---|---|---|---|
T = 3% | 35 | 620 | 3.07 | 18.41 | 11.41 |
T = 5% | 58 | 490 | 17.09 | 6.93 | 3.4 |
Gain Medium | SA | Shortest Pulse Width/ns | Peak Power/W | Maximum Pulse Energy/μJ | Year |
---|---|---|---|---|---|
Er:ZBLAN | Black phosphorus | 1180 | / | 7.7 | 2015 [44] |
Er:Lu2O3 | MoS2 | 335 | 23.8 | 8.5 | 2016 [45] |
Er:Y2O3 | Black phosphorus | 4470 | 0.11 | 0.48 | 2016 [46] |
Er:CaF2 | Graphene | 1324 | 2.07 | 2.74 | 2016 [7] |
Er:YSGG | Bi2Te3/graphene | 243 | 5.14 | 1.25 | 2017 [47] |
Er:SrF2 | Bismuth nanosheets | 980 | 4.1 | 4.02 | 2018 [48] |
Er:Y2O3 | Graphene | 296 | 8.77 | 2.59 | 2018 [49] |
Er:CaF2 | Graphene | 632.9 | 5.85 | 3.7 | 2020 [16] |
Er:CaF2 | Bismuth nanosheets | 607 | 5.35 | 3.25 | 2020 [50] |
Er:Lu2O3 | MXene Nb2CTx | 223.7 | 16.96 | 3.79 | 2021 [51] |
Er:Ca0.8Sr0.2F2 | ITO-NWAs | 620 | 18.41 | 11.41 (T = 3%) | This work |
490 | 6.93 | 3.4 (T = 5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zong, M.; Zheng, J.; Zhang, Z.; Peng, Q.; Jiang, S.; Liu, J.; Liu, J.; Su, L. Indium Tin Oxide Nanowire Arrays as a Saturable Absorber for Mid-Infrared Er:Ca0.8Sr0.2F2 Laser. Nanomaterials 2022, 12, 454. https://doi.org/10.3390/nano12030454
Zhao Y, Zong M, Zheng J, Zhang Z, Peng Q, Jiang S, Liu J, Liu J, Su L. Indium Tin Oxide Nanowire Arrays as a Saturable Absorber for Mid-Infrared Er:Ca0.8Sr0.2F2 Laser. Nanomaterials. 2022; 12(3):454. https://doi.org/10.3390/nano12030454
Chicago/Turabian StyleZhao, Yuanhao, Mengyu Zong, Jie Zheng, Zhen Zhang, Qianqian Peng, Shouzhen Jiang, Jie Liu, Jingjing Liu, and Liangbi Su. 2022. "Indium Tin Oxide Nanowire Arrays as a Saturable Absorber for Mid-Infrared Er:Ca0.8Sr0.2F2 Laser" Nanomaterials 12, no. 3: 454. https://doi.org/10.3390/nano12030454
APA StyleZhao, Y., Zong, M., Zheng, J., Zhang, Z., Peng, Q., Jiang, S., Liu, J., Liu, J., & Su, L. (2022). Indium Tin Oxide Nanowire Arrays as a Saturable Absorber for Mid-Infrared Er:Ca0.8Sr0.2F2 Laser. Nanomaterials, 12(3), 454. https://doi.org/10.3390/nano12030454