Stochastic Microsensors Based on Carbon Nanotubes for Molecular Recognition of the Isocitrate Dehydrogenases 1 and 2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments and Methods
2.3. Design of 3D Stochastic Microsensors
2.4. Stochastic Mode
2.5. Sample Preparation
3. Results and Discussion
3.1. Morphological Characterization of the CNT Pastes
3.2. Response Characteristics of the Stochastic Microsensors
3.3. Determination of IDH1 and IDH2 in Tumor Brain Tissue and Blood Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics Approval
References
- Oermann, E.K.; Wu, J.; Guan, K.L.; Xiong, Y. Alterations of metabolic genes and metabolites in cancer. Semin. Cell Dev. Biol. 2012, 23, 370–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietlein, F.; Weghorn, D.; Taylor-Weiner, A.; Richters, A.; Reardon, B.; Liu, D.; Lander, E.S.; Van Allen, E.M.; Sunyaev, S.R. Identification of cancer driver genes based on nucleotide context. Nat. Genet. 2020, 52, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Tommasini-Ghelfi, S.; Murnan, K.; Kouri, F.M.; Mahajan, A.S.; May, J.L.; Stegh, A.H. Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease. Sci. Adv. 2019, 5, eaaw4543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molenaar, R.J.; Maciejewski, J.P.; Wilmink, J.W.; van Noorden, C.J.F. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 2018, 37, 1949–1960. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lang, F.; Chou, F.J.; Zaghloul, K.A.; Yang, C. Isocitrate Dehydrogenase Mutations in Glioma: Genetics, Biochemistry, and Clinical Indications. Biomedicines 2020, 8, 294. [Google Scholar] [CrossRef]
- Li, J.J.; Li, R.; Wang, W.; Zhang, B.; Song, X.; Zhang, C.; Gao, Y.; Liao, Q.; He, Y.; You, S.; et al. IDH2 is a novel diagnostic and prognostic serum biomarker for non-small-cell lung cancer. Molec. Oncol. 2018, 12, 602–610. [Google Scholar] [CrossRef] [Green Version]
- Dolecek, T.; Propp, J.; Stroup, N.; Kruchko, C. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro. Oncol. 2012, 14, v1–v49. [Google Scholar] [CrossRef]
- Felsberg, J.; Wolter, M.; Seul, H.; Friendensdorf, B.; Goppert, M.; Sabel, M.C.; Reifenberger, G. Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathol. 2010, 119, 501–507. [Google Scholar] [CrossRef]
- Shivarov, V.; Ivanova, M.; Hadjiev, E.; Naumova, E. Rapid Detection of DNMT3A R882 Mutations in Hematologic Malignancies Using a Novel Bead-Based Suspension Assay with BNA(NC) Probes. PLoS ONE 2014, 8, e76944. [Google Scholar] [CrossRef] [Green Version]
- Horbinski, C.; Kelly, L.; Nikiforov, Y.E.; Durso, M.B.; Nikiforova, M.N. Detection of IDH1 and IDH2 Mutations by Fluorescence Melting Curve Analysis as a Diagnostic Tool for Brain Biopsies. J. Mol. Diagnosis 2010, 12, 487–492. [Google Scholar] [CrossRef]
- Cioates Negut, C.; Stefan-van Staden, R.-I.; Badulescu, M.; Bita, B. Disposable stochastic sensors obtained by nanolayer deposition of copper, graphene, and copper-graphene composite on silk for the determination of isocitrate dehydrogenases 1 and 2. Anal. Bioanal. Chem. 2022, 414, 1797–1807. [Google Scholar] [CrossRef]
- Dash, D.P.; Dinauer, D. FDA Cleared Companion Diagnostics (CDx) Tests (IDH1, IDH2 and FLT3) for Acute Myeloid Leukemia (AML) Patient Care. Blood 2021, 138, 4442–4443. [Google Scholar] [CrossRef]
- Stefan-van Staden, R.I.; Gheorghe, D.C.; Jinga, V.; Sima, C.S.; Geanta, M. Fast Screening of Whole Blood and Tumor Tissue for Bladder Cancer Biomarkers Using Stochastic Needle Sensors. Sensors 2020, 20, 2420. [Google Scholar] [CrossRef]
- Stefan-van Staden, R.I.; Gheorghe, S.S.; Ilie-Mihai, R.M.; Badulescu, M. Disposable Stochastic Sensor Based on Deposition of a Nanolayer of Silver on Silk for Molecular Recognition of Specific Biomarkers. J. Electrochem. Soc. 2021, 168, 037515. [Google Scholar] [CrossRef]
- Stefan-van Staden, R.I.; Comnea-Stancu, I.R.; Surdu-Bob, C.C. Molecular Screening of Blood Samples for the Simultaneous Detection of CEA, HER-1, NSE, CYFRA 21-1 Using Stochastic Sensors. J. Electrochem. Soc. 2017, 164, B267–B273. [Google Scholar] [CrossRef]
- Ajayan, P.M. Nanotubes from Carbon. Chem. Rev. 1999, 99, 1787–1800. [Google Scholar] [CrossRef]
- Britto, P.J.; Santhanam, K.S.V.; Rubio, A.; Alonso, J.A.; Ajayan, P.M. Improved Charge Transfer at Carbon Nanotube Electrodes. Adv. Mater. 1999, 11, 154–157. [Google Scholar] [CrossRef]
- Monsu Scolaro, L.; Castriciano, M.; Romeo, A.; Patane, S.; Cefali, E.; Allegrini, M. Aggregation Behavior of Protoporphyrin IX in Aqueous Solutions: Clear Evidence of Vesicle Formation. J. Phys. Chem. 2002, 106, 2453–2459. [Google Scholar] [CrossRef]
- Schmidt, J. Stochastic sensors. J. Mater. Chem. 2005, 15, 831–840. [Google Scholar] [CrossRef]
- Bayley, H.; Cremer, P.S. Stochastic sensors inspired by biology. Nature 2001, 413, 226–230. [Google Scholar] [CrossRef]
- Liu, A.; Zhao, Q.; Guan, X. Stochastic nanopore sensors for the detection of terrorist agents: Current status and challenges. Anal. Chim. Acta 2010, 675, 106–115. [Google Scholar] [CrossRef]
- Gu, L.Q.; Braha, O.; Conlon, S.; Cheley, S.; Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 1999, 398, 686–690. [Google Scholar] [CrossRef]
Stochastic Microsensor Based On | Signature of IDH toff (s) | Linear Concentration Range (ng mL−1) | Calibration Equations; The Correlation Coefficient, r * | Sensitivity (s µg mL−1) | LOQ (fg mL−1) |
---|---|---|---|---|---|
IDH1 | |||||
CuAuNP-PIX/SWCNT | 0.7 | 1 × 10−5–1 × 102 | 1/ton = 0.03 + 1.48 × C; r = 0.9999 | 1.48 | 10 |
IDH2 | |||||
1.4 | 5 × 10−8–5 × 102 | 1/ton = 0.03 + 7.30 × 104 × C; r = 0.9999 | 7.30 × 104 | 5 × 10−3 | |
CuAuNP-PIX/MWCNT | IDH1 | ||||
1.5 | 1 × 10−5–1 × 102 | 1/ton = 0.04 + 9.58 × 105 × C; r = 0.9989 | 9.58 × 105 | 10 | |
IDH2 | |||||
0.7 | 5 × 10−8–5 × 102 | 1/ton = 0.16 + 1.50 × 107 × C; r = 0.9999 | 1.50 × 107 | 5 × 10−3 |
Stochastic Microsensors | Linear Concentration Range (ng mL−1) | Sensitivity (s µg mL−1) | LOQ (fg mL−1) | Reference |
---|---|---|---|---|
Disposable Chitosan/Cu nanolayer | IDH1 | [11] | ||
1 × 10−4–1 × 102 | 1.00 × 107 | 102 | ||
IDH2 | ||||
5 × 10−7–5 × 102 | 9.51 × 105 | 5 × 10−1 | ||
Disposable Chitosan/GR * nanolayer | IDH1 | |||
1 × 10−8–1 × 102 | 3.77 × 107 | 10−2 | ||
IDH2 | ||||
5 × 10−8–5 × 102 | 1.88 × 107 | 5 × 10−2 | ||
Disposable Chitosan/GR-Cu composite nanolayer | IDH1 | |||
1 × 10−5–1 × 102 | 2.73 × 107 | 10−1 | ||
IDH2 | ||||
5 × 10−8–5 × 102 | 4.44 × 106 | 5 × 10−2 | ||
CuAuNP-PIX/SWCNT | IDH1 | This work | ||
1 × 10−5–1 × 102 | 1.48 | 10 | ||
IDH2 | ||||
5 × 10−8–5 × 102 | 7.30 × 104 | 5 × 10−3 | ||
CuAuNP-PIX/MWCNT | IDH1 | |||
1 × 10−5–1 × 102 | 9.58 × 105 | 10 | ||
IDH2 | ||||
5 × 10−8–5 × 102 | 1.50 × 107 | 5 × 10−3 |
Stochastic Microsensor Based On | toff (s), Signature | |||||
---|---|---|---|---|---|---|
IDH1 | IDH2 | Heregulin-α | Dopamine | Epinephrine | Levodopa | |
CuAuNP-PIX/SWCNT | 0.7 | 1.4 | 0.2 | 1.9 | 3.0 | 2.5 |
CuAuNP-PIX/MWCNT | 1.5 | 0.7 | 1.8 | 2.4 | 3.2 | 2.8 |
Sample No | ng mL−1, IDH1 | ng mL−1, IDH2 | ||||
---|---|---|---|---|---|---|
Stochastic Microsensors Based On | ELISA | Stochastic Microsensors Based On | ELISA | |||
CuAuNP-PIX-SWCNT | CuAuNP-PIX-MWCNT | CuAuNP-PIX-SWCNT | CuAuNP-PIX-MWCNT | |||
1 | 15.26 ± 0.02 | 16.22 ± 0.03 | 16.03 | 26.40 ± 0.02 | 26.50 ± 0.03 | 26.85 |
2 | 14.03 ± 0.03 | 14.52 ± 0.02 | 14.48 | 42.42 ± 0.03 | 42.65 ± 0.04 | 42.82 |
3 | 14.76 ± 0.03 | 16.22 ± 0.04 | 16.00 | 27.30 ± 0.03 | 28.56 ± 0.04 | 27.85 |
4 | 29.97 ± 0.03 | 29.62 ± 0.02 | 29.03 | 35.60 ± 0.04 | 35.27 ± 0.03 | 35.57 |
5 | 9.19 ± 0.02 | 9.73 ± 0.03 | 9.54 | 63.87 ± 0.05 | 64.40 ± 0.04 | 63.90 |
6 | 15.26 ± 0.03 | 15.02 ± 0.04 | 15.05 | 34.77 ± 0.03 | 34.68 ± 0.02 | 34.70 |
7 | 6.90 ± 0.02 | 6.07 ± 0.03 | 6.93 | 22.44 ± 0.04 | 21.73 ± 0.03 | 22.48 |
8 | 15.85 ± 0.03 | 15.14 ± 0.02 | 16.12 | 23.02 ± 0.02 | 23.72 ± 0.05 | 23.80 |
t-test | 2.94 | 1.83 | 2.87 | 2.08 |
Sample No | ng mL−1, IDH1 | ng mL−1, IDH2 | ||||
---|---|---|---|---|---|---|
3D Stochastic Microsensors Based On | ELISA | 3D Stochastic Microsensors Based On | ELISA | |||
CuAuNP-PIX-SWCNT | CuAuNP-PIX-MWCNT | CuAuNP-PIX-SWCNT | CuAuNP-PIX-MWCNT | |||
1 | 55.25 ± 0.03 | 53.56 ± 0.02 | 54.24 | 98.64 ± 0.02 | 97.98 ± 0.02 | 98.70 |
2 | 77.25 ± 0.03 | 73.28 ± 0.05 | 75.00 | 70.55 ± 0.02 | 71.85 ± 0.04 | 70.88 |
3 | 55.24 ± 0.04 | 53.35 ± 0.05 | 54.28 | 97.30 ± 0.03 | 99.00 ± 0.08 | 99.02 |
4 | 10.84 ± 0.03 | 9.89 ± 0.03 | 10.94 | 34.77 ± 0.05 | 34.49 ± 0.04 | 35.00 |
5 | 52.75 ± 0.03 | 53.66 ± 0.05 | 53.84 | 56.68 ± 0.03 | 54.52 ± 0.04 | 55.94 |
6 | 5.36 ± 0.03 | 5.33 ± 0.02 | 5.40 | 21.98 ± 0.02 | 22.81 ± 0.03 | 23.03 |
7 | 52.97 ± 0.03 | 53.34 ± 0.04 | 54.02 | 44.14 ± 0.02 | 44.95 ± 0.05 | 45.00 |
8 | 13.04 ± 0.04 | 13.14 ± 0.02 | 13.15 | 20.43 ± 0.03 | 20.35 ± 0.02 | 21.00 |
9 | 17.50 ± 0.03 | 17.69 ± 0.04 | 17.70 | 33.38 ± 0.04 | 33.61 ± 0.05 | 33.54 |
10 | 14.49 ± 0.03 | 13.28 ± 0.05 | 14.53 | 35.59 ± 0.03 | 34.52 ± 0.02 | 35.80 |
11 | 96.48 ± 0.01 | 96.34 ± 0.02 | 97.00 | 102.36 ± 0.03 | 102.65 ± 0.02 | 103.00 |
12 | 14.11 ± 0.02 | 14.95 ± 0.03 | 15.00 | 26.31 ± 0.02 | 26.81 ± 0.04 | 26.90 |
t-test | 2.20 | 1.75 | 2.56 | 2.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefan-van Staden, R.-I.; Cioates Negut, C.; Gheorghe, S.S.; Sfirloaga, P. Stochastic Microsensors Based on Carbon Nanotubes for Molecular Recognition of the Isocitrate Dehydrogenases 1 and 2. Nanomaterials 2022, 12, 460. https://doi.org/10.3390/nano12030460
Stefan-van Staden R-I, Cioates Negut C, Gheorghe SS, Sfirloaga P. Stochastic Microsensors Based on Carbon Nanotubes for Molecular Recognition of the Isocitrate Dehydrogenases 1 and 2. Nanomaterials. 2022; 12(3):460. https://doi.org/10.3390/nano12030460
Chicago/Turabian StyleStefan-van Staden, Raluca-Ioana, Catalina Cioates Negut, Sorin Sebastian Gheorghe, and Paula Sfirloaga. 2022. "Stochastic Microsensors Based on Carbon Nanotubes for Molecular Recognition of the Isocitrate Dehydrogenases 1 and 2" Nanomaterials 12, no. 3: 460. https://doi.org/10.3390/nano12030460
APA StyleStefan-van Staden, R. -I., Cioates Negut, C., Gheorghe, S. S., & Sfirloaga, P. (2022). Stochastic Microsensors Based on Carbon Nanotubes for Molecular Recognition of the Isocitrate Dehydrogenases 1 and 2. Nanomaterials, 12(3), 460. https://doi.org/10.3390/nano12030460