Exploiting Nanomaterials for Optical Coherence Tomography and Photoacoustic Imaging in Nanodentistry
Abstract
:1. Introduction
2. Nanodentistry
3. OCT and PAI Imaging Techniques
3.1. OCT: From Basics to Applications in Nanodentistry
3.2. OCT in Nanodentistry: Image Enhancement with Gold Nanoparticles
3.3. OCT in Nanodentistry: Association of AuNP and AuNR as Contrast Agents for Imaging Enhancement
3.4. PAI: From Basics to Nanodentistry Applications
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, S.K.; Khan, Z.A.; Mishra, B. Impact of Nanotechnology on Socio-Economic Aspects: An Overview. Rev. Nanosci. Nanotechnol. 2013, 2, 127–142. [Google Scholar] [CrossRef]
- Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. A Review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; pp. 219–224. [Google Scholar]
- Salamanca-Buentello, F.; Daar, A.S. Nanotechnology, Equity and Global Health. Nat. Nanotechnol. 2021, 16, 358–361. [Google Scholar] [CrossRef]
- Desai, K.; Somasundaram, J. Nanodentistry–An Overview. Eur. J. Mol. Clin. Med. 2020, 7, 2879–2887. [Google Scholar]
- Foong, L.K.; Foroughi, M.M.; Mirhosseini, A.F.; Safaei, M.; Jahani, S.; Mostafavi, M.; Ebrahimpoor, N.; Sharifi, M.; Varma, R.S.; Khatami, M. Applications of Nano-Materials in Diverse Dentistry Regimes. RSC Adv. 2020, 10, 15430–15460. [Google Scholar] [CrossRef]
- Padovani, G.C.; Feitosa, V.P.; Sauro, S.; Tay, F.R.; Durán, G.; Paula, A.J.; Durán, N. Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends Biotechnol. 2015, 33, 621–636. [Google Scholar] [CrossRef]
- Melo, M.A.S.; Guedes, S.F.F.; Xu, H.H.K.; Rodrigues, L.K.A. Nanotechnology-Based Restorative Materials for Dental Caries Management. Trends Biotechnol. 2013, 31, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Khurshid, Z.; Zafar, M.; Qasim, S.; Shahab, S.; Naseem, M.; Abu Reqaiba, A. Advances in Nanotechnology for Restorative Dentistry. Materials 2015, 8, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Yamagata, S.; Hamba, Y.; Nakanishi, K.; Abe, S.; Akasaka, T.; Ushijima, N.; Uo, M.; Iida, J.; Watari, F. Introduction of Rare-Earth-Element-Containing ZnO Nanoparticles into Orthodontic Adhesives. Nano Biomed. 2012, 4, 11–17. [Google Scholar]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [Green Version]
- Grumezescu, A. Nanobiomaterials in Dentistry: Applications of Nanobiomaterials; William Andrew: Norwich, NY, USA, 2016. [Google Scholar]
- Smith, B.R.; Gambhir, S.S. Nanomaterials for In Vivo Imaging. Chem. Rev. 2017, 117, 901–986. [Google Scholar] [CrossRef]
- Hannig, M.; Hannig, C. Nanomaterials in Preventive Dentistry. Nat. Nanotechnol. 2010, 5, 565–569. [Google Scholar] [PubMed]
- Ellis, P.J. Nanodentistry: The Benefits of Nanotechnology in Dentistry and Its Impact on Oral Health. J. Student Sci. Technol. 2017, 10, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N.; Kulshreshtha, N.M.; Dixit, M.; Jadhav, I.; Shrivastava, D.; Bisen, P.S. Nanodentistry: Novel Approaches. In Nanostructures for Oral Medicine; Elsevier: Amsterdam, The Netherlands, 2017; pp. 751–776. [Google Scholar]
- Adeola, H.A.; Sabiu, S.; Adekiya, T.A.; Aruleba, R.T.; Aruwa, C.E.; Oyinloye, B.E. Prospects of Nanodentistry for the Diagnosis and Treatment of Maxillofacial Pathologies and Cancers. Heliyon 2020, 6, e04890. [Google Scholar] [CrossRef] [PubMed]
- Raura, N.; Garg, A.; Arora, A.; Roma, M. Nanoparticle Technology and Its Implications in Endodontics: A Review. Biomater. Res. 2020, 24, 21. [Google Scholar] [CrossRef]
- Seth, N.I.; Khan, K.H. Dentistry at the Nano Level: The Advent of Nanodentistry. Int. Healthc. Res. J. 2017, 1, 3–9. [Google Scholar] [CrossRef]
- Brun, A.; Moignot, N.; Colombier, M.-L.; Dursun, E. Emerging Nanotechnology in Non-Surgical Periodontal Therapy in Animal Models: A Systematic Review. Nanomaterials 2020, 10, 1414. [Google Scholar] [CrossRef]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic Accuracy of Deep Learning in Medical Imaging: A Systematic Review and Meta-Analysis. NPJ Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef]
- Nayak, S.; Patgiri, R. 6G Communication Technology: A Vision on Intelligent Healthcare. In Health Informatics: A Computational Perspective in Healthcare; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–18. [Google Scholar]
- Swanson, E.A.; Fujimoto, J.G. The Ecosystem That Powered the Translation of OCT from Fundamental Research to Clinical and Commercial Impact [Invited]. Biomed. Opt. Express 2017, 8, 1638. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.V.; Yao, J. A Practical Guide to Photoacoustic Tomography in the Life Sciences. Nat. Methods 2016, 13, 627–638. [Google Scholar]
- Zhu, J.; He, X.; Chen, Z. Perspective: Current Challenges and Solutions of Doppler Optical Coherence Tomography and Angiography for Neuroimaging. APL Photonics 2018, 3, 120902. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, J.G.; Drexler, W. Introduction to OCT. In Optical Coherence Tomography; Springer International Publishing: Cham, Germany, 2015; pp. 3–64. [Google Scholar]
- Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 Nm. Nanoscale Horiz. 2016, 1, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Sahyoun, C.C.; Subhash, H.M.; Peru, D.; Ellwood, R.P.; Pierce, M.C. An Experimental Review of Optical Coherence Tomography Systems for Noninvasive Assessment of Hard Dental Tissues. Caries Res. 2020, 54, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Sadr, A.; Sumi, Y.; Tagami, J. Application of Optical Coherence Tomography (OCT) for Diagnosis of Caries, Cracks, and Defects of Restorations. Curr. Oral Heal. Rep. 2015, 2, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Machoy, M.; Seeliger, J.; Szyszka-Sommerfeld, L.; Koprowski, R.; Gedrange, T.; Woźniak, K. The Use of Optical Coherence Tomography in Dental Diagnostics: A State-of-the-Art Review. J. Healthc. Eng. 2017, 2017, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Graça, N.D.; Silva, A.R.; Fernandes, L.O.; da Silva Pedrosa, M.; Guimarães, R.P.; Dos Santos, S.C.; Gomes, A.S.; da Silva, C.H. In Vivo Optical Coherence Tomographic Imaging to Monitor Gingival Recovery and the Adhesive Interface in Aesthetic Oral Rehabilitation: A Case Report. Imaging Sci. Dent. 2019, 49, 171. [Google Scholar] [CrossRef]
- Fernandes, L.O.; Mota, C.C.; Oliveira, H.O.; Neves, J.K.; Santiago, L.M.; Gomes, A.S. Optical Coherence Tomography Follow-up of Patients Treated from Periodontal Disease. J. Biophotonics 2019, 12, e201800209. [Google Scholar] [CrossRef]
- de Melo, L.S.A.; de Araujo, R.E.; Freitas, A.Z.; Zezell, D.; Vieira, N.D.; Girkin, J.; Hall, A.; Carvalho, M.T.; Gomes, A.S.L. Evaluation of Enamel Dental Restoration Interface by Optical Coherence Tomography. J. Biomed. Opt. 2005, 10, 064027. [Google Scholar] [CrossRef]
- Suassuna, F.C.M.; Maia, A.M.A.; Melo, D.P.; Antonino, A.C.D.; Gomes, A.S.L.; Bento, P.M. Comparison of Microtomography and Optical Coherence Tomography on Apical Endodontic Filling Analysis. Dentomaxillofac. Radiol. 2018, 47, 20170174. [Google Scholar] [CrossRef]
- de Oliveira, B.P.; Câmara, A.C.; Duarte, D.A.; Gomes, A.S.L.; Heck, R.J.; Antonino, A.C.D.; Aguiar, C.M. Detection of Apical Root Cracks Using Spectral Domain and Swept-Source Optical Coherence Tomography. J. Endod. 2017, 43, 1148–1151. [Google Scholar] [CrossRef]
- Fernandes, L.O.; Mota, C.C.B.O.; de Melo, L.S.A.; da Costa Soares, M.U.S.; da Silva Feitosa, D.; Gomes, A.S.L. In Vivo Assessment of Periodontal Structures and Measurement of Gingival Sulcus with Optical Coherence Tomography: A Pilot Study. J. Biophotonics 2017, 10, 862–869. [Google Scholar] [CrossRef] [PubMed]
- de Melo Monteiro, G.Q.; Montes, M.A.J.R.; Rolim, T.V.; de Oliveira Mota, C.C.B.; Kyotoku, B.D.B.C.; Gomes, A.S.L.; de Freitas, A.Z. Alternative Methods for Determining Shrinkage in Restorative Resin Composites. Dent. Mater. 2011, 27, e176–e185. [Google Scholar] [CrossRef] [PubMed]
- Maia, A.M.A.; Karlsson, L.; Margulis, W.; Gomes, A.S.L. Evaluation of Two Imaging Techniques: Near-Infrared Transillumination and Dental Radiographs for the Detection of Early Approximal Enamel Caries. Dentomaxillofac. Radiol. 2011, 40, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Maia, A.M.A.; Fonsêca, D.D.D.; Kyotoku, B.B.C.; Gomes, A.S.L. Characterization of Enamel in Primary Teeth by Optical Coherence Tomography for Assessment of Dental Caries. Int. J. Paediatr. Dent. 2010, 20, 158–164. [Google Scholar] [CrossRef]
- Braz, A.K.; Kyotoku, B.B.; Braz, R.; Gomes, A.S. Evaluation of Crack Propagation in Dental Composites by Optical Coherence Tomography. Dent. Mater. 2009, 25, 74–79. [Google Scholar] [CrossRef]
- Fonsêca, D.D.D.; Kyotoku, B.B.C.; Maia, A.M.A.; Gomes, A.S.L. In Vitro Imaging of Remaining Dentin and Pulp Chamber by Optical Coherence Tomography: Comparison between 850 and 1280 Nm. J. Biomed. Opt. 2009, 14, 024009. [Google Scholar] [CrossRef]
- Alexandrov, S.; Subhash, H.; Leahy, M. Nanosensitive Optical Coherence Tomography for the Study of Changes in Static and Dynamic Structures. Quantum Electron. 2014, 44, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, S.A.; Subhash, H.M.; Zam, A.; Leahy, M. Nano-Sensitive Optical Coherence Tomography. Nanoscale 2014, 6, 3545–3549. [Google Scholar] [CrossRef]
- Lal, C.; Alexandrov, S.; Rani, S.; Zhou, Y.; Ritter, T.; Leahy, M. Nanosensitive Optical Coherence Tomography to Assess Wound Healing within the Cornea. Biomed. Opt. Express 2020, 11, 3407. [Google Scholar] [CrossRef]
- Yi, J.; Radosevich, A.J.; Rogers, J.D.; Norris, S.C.P.; Çapoğlu, İ.R.; Taflove, A.; Backman, V. Can OCT Be Sensitive to Nanoscale Structural Alterations in Biological Tissue? Opt. Express 2013, 21, 9043–9059. [Google Scholar] [CrossRef] [Green Version]
- Braz, A.; de Araujo, R.; Ohulchanskyy, T.; Shukla, S.; Bergey, E.; Gomes, A.; Prasad, P. In Situ Gold Nanoparticles Formation: Contrast Agent for Dental Optical Coherence Tomography. J. Biomed. Opt. 2012, 17, 066003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, V.S.M.; Mota, C.C.B.O.; Souza, A.F.; Silva, E.J.; Silva, A.F.; Gerbi, M.E.M.M.; Gomes, A.S.L. Silver Nanoparticles as Optical Clearing Agent Enhancers to Improve Caries Diagnostic by Optical Coherence Tomography. In Proceedings of the Colloidal Nanoparticles for Biomedical Applications XIII, San Francisco, CA, USA, 23 February 2018; Liang, X.-J., Parak, W.J., Osiński, M., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 44. [Google Scholar]
- Noronha, V.T.; Paula, A.J.; Durán, G.; Galembeck, A.; Cogo-Müller, K.; Franz-Montan, M.; Durán, N. Silver Nanoparticles in Dentistry. Dent. Mater. 2017, 33, 1110–1126. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, J.M.; Mori, M.; Sanches, H.L.; Cruz, A.D.; Poiate, E.; Poiate, I.A. Silver Nanoparticles in Dental Biomaterials. Int. J. Biomater. 2015, 2015, 485275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, J.A.; e Silva, A.V.C.; dos Santos Júnior, V.E.; de Melo Júnior, P.C.; Arnaud, M.; Lima, M.G.; Flores, M.A.P.; Stamford, T.C.M.; Dias Pereira, J.R.; Ribeiro Targino, A.G.; et al. Effects of a New Nano-Silver Fluoride-Containing Dentifrice on Demineralization of Enamel and Streptococcus Mutans Adhesion and Acidogenicity. Int. J. Dent. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tuchin, V.V.; Maksimova, I.L.; Zimnyakov, D.A.; Kon, I.L.; Mavlyutov, A.H.; Mishin, A.A. Light Propagation in Tissues with Controlled Optical Properties. J. Biomed. Opt. 1997, 2, 401. [Google Scholar] [CrossRef]
- Costantini, I.; Cicchi, R.; Silvestri, L.; Vanzi, F.; Pavone, F.S. In-Vivo and Ex-Vivo Optical Clearing Methods for Biological Tissues: Review. Biomed. Opt. Express 2019, 10, 5251. [Google Scholar] [CrossRef]
- Tuchin, V.V.; Zhu, D.; Genina, E.A. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Wen, X.; Jacques, S.L.; Tuchin, V.V.; Zhu, D. Enhanced Optical Clearing of Skin in Vivo and Optical Coherence Tomography In-Depth Imaging. J. Biomed. Opt. 2012, 17, 066022. [Google Scholar] [CrossRef]
- Larin, K.V.; Ghosn, M.G.; Bashkatov, A.N.; Genina, E.A.; Trunina, N.A.; Tuchin, V.V. Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1244–1259. [Google Scholar] [CrossRef]
- Sudheendran, N.; Mohamed, M.; Ghosn, M.G.; Tuchin, V.V.; Larin, K.V. Assessment of Tissue Optical Clearing as a Function of Glucose Concentration Using Optical Coherence Tomography. J. Innov. Opt. Health Sci. 2010, 3, 169–176. [Google Scholar] [CrossRef]
- Bykov, A.; Hautala, T.; Kinnunen, M.; Popov, A.; Karhula, S.; Saarakkala, S.; Nieminen, M.T.; Tuchin, V.; Meglinski, I. Imaging of Subchondral Bone by Optical Coherence Tomography upon Optical Clearing of Articular Cartilage. J. Biophotonics 2016, 9, 270–275. [Google Scholar] [CrossRef]
- Hu, J.; Romero Abujetas, D.; Tsoutsi, D.; Leggio, L.; Rivero, F.; Martín Rodríguez, E.; Aguilar Torres, R.; Sánchez-Gil, J.A.; Loro Ramírez, H.; Gallego, D.; et al. Invited Article: Experimental Evaluation of Gold Nanoparticles as Infrared Scatterers for Advanced Cardiovascular Optical Imaging. APL Photonics 2018, 3, 080803. [Google Scholar] [CrossRef] [Green Version]
- Si, P.; Yuan, E.; Liba, O.; Winetraub, Y.; Yousefi, S.; SoRelle, E.D.; Yecies, D.W.; Dutta, R.; de la Zerda, A. Gold Nanoprisms as Optical Coherence Tomography Contrast Agents in the Second Near-Infrared Window for Enhanced Angiography in Live Animals. ACS Nano 2018, 12, 11986–11994. [Google Scholar] [CrossRef] [PubMed]
- Oldenburg, A.L.; Hansen, M.N.; Ralston, T.S.; Wei, A.; Boppart, S.A. Imaging Gold Nanorods in Excised Human Breast Carcinoma by Spectroscopic Optical Coherence Tomography. J. Mater. Chem. 2009, 19, 6407. [Google Scholar] [CrossRef] [PubMed]
- Zagaynova, E.V.; Shirmanova, M.V.; Kirillin, M.Y.; Khlebtsov, B.N.; Orlova, A.G.; Balalaeva, I.V.; Sirotkina, M.A.; Bugrova, M.L.; Agrba, P.D.; Kamensky, V.A. Contrasting Properties of Gold Nanoparticles for Optical Coherence Tomography: Phantom, in Vivo Studies and Monte Carlo Simulation. Phys. Med. Biol. 2008, 53, 4995–5009. [Google Scholar] [CrossRef]
- Maia, A.M.A.; de Freitas, A.Z.; de Campello, S.; Gomes, A.S.L.; Karlsson, L. Evaluation of Dental Enamel Caries Assessment Using Quantitative Light Induced Fluorescence and Optical Coherence Tomography. J. Biophotonics 2016, 9, 596–602. [Google Scholar] [CrossRef]
- Melo, M.; Pascual, A.; Camps, I.; del Campo, Á.; Ata-Ali, J. Caries Diagnosis Using Light Fluorescence Devices in Comparison with Traditional Visual and Tactile Evaluation: A Prospective Study in 152 Patients. Odontology 2017, 105, 283–290. [Google Scholar] [CrossRef]
- Brito-Silva, A.M.; Sobral-Filho, R.G.; Barbosa-Silva, R.; de Araújo, C.B.; Galembeck, A.; Brolo, A.G. Improved Synthesis of Gold and Silver Nanoshells. Langmuir 2013, 29, 4366–4372. [Google Scholar] [CrossRef]
- Popescu, D.P.; Sowa, M.G.; Hewko, M.D.; Choo-Smith, L.-P. Assessment of Early Demineralization in Teeth Using the Signal Attenuation in Optical Coherence Tomography Images. J. Biomed. Opt. 2008, 13, 054053. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Yuan, W.; Mavadia-Shukla, J.; Li, X. Optical Clearing for Luminal Organ Imaging with Ultrahigh-Resolution Optical Coherence Tomography. J. Biomed. Opt. 2016, 21, 081211. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.V. Photoacoustic Imaging in Biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef] [Green Version]
- Erfanzadeh, M.; Zhu, Q. Photoacoustic Imaging with Low-Cost Sources; A Review. Photoacoustics 2019, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, S.; Albanese, S.; Mancini, M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. Contrast Media Mol. Imaging 2019, 2019, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Wu, B.; Dong, Y.; Song, Z.; Zhao, Y.; Ni, X.; Yang, Y.; Liu, Z. Biomedical Photoacoustics: Fundamentals, Instrumentation and Perspectives on Nanomedicine. Int. J. Nanomed. 2016, 12, 179–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldrich, M.B.; Marshall, M.V.; Sevick-Muraca, E.M.; Lanza, G.; Kotyk, J.; Culver, J.; Wang, L.V.; Uddin, J.; Crews, B.C.; Marnett, L.J.; et al. Seeing It through: Translational Validation of New Medical Imaging Modalities. Biomed. Opt. Express 2012, 3, 764. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wei, W.; Singh, A.; He, G.S.; Kannan, R.; Tan, L.-S.; Chen, G.; Prasad, P.N.; Xia, J. Nonlinear Photoacoustic Imaging by in Situ Multiphoton Upconversion and Energy Transfer. ACS Photonics 2017, 4, 2699–2705. [Google Scholar] [CrossRef]
- Maldonado, M.E.; Das, A.; Jawaid, A.M.; Ritter, A.J.; Vaia, R.A.; Nagaoka, D.A.; Vianna, P.G.; Seixas, L.; de Matos, C.J.S.; Baev, A.; et al. Nonlinear Optical Interactions and Relaxation in 2D Layered Transition Metal Dichalcogenides Probed by Optical and Photoacoustic Z-Scan Methods. ACS Photonics 2020, 7, 3440–3447. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Wang, X.; Ku, G.; Gill, K.L.; O’Neal, D.P.; Stoica, G.; Wang, L.V. Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain. Nano Lett. 2004, 4, 1689–1692. [Google Scholar] [CrossRef]
- Guo, B.; Sheng, Z.; Kenry, K.; Hu, D.; Lin, X.; Xu, S.; Liu, C.; Zheng, H.; Liu, B. Biocompatible Conjugated Polymer Nanoparticles for Highly Efficient Photoacoustic Imaging of Orthotopic Brain Tumors in the Second Near-Infrared Window. Mater. Horiz. 2017, 4, 1151–1156. [Google Scholar] [CrossRef]
- Kim, K.; Witte, R.; Koh, I.; Ashkenazi, S.; O’Donnell, M. Early Detection of Dental Caries Using Photoacoustics; Oraevsky, A.A., Wang, L.V., Eds.; SPIE: Bellingham, WA, USA, 2006; p. 60860G. [Google Scholar]
- Cheng, R.; Shao, J.; Gao, X.; Tao, C.; Ge, J.; Liu, X. Noninvasive Assessment of Early Dental Lesion Using a Dual-Contrast Photoacoustic Tomography. Sci. Rep. 2016, 6, 21798. [Google Scholar] [CrossRef] [Green Version]
- Koyama, T.; Kakino, S.; Matsuura, Y. A Feasibility Study of Photoacoustic Detection of Hidden Dental Caries Using a Fiber-Based Imaging System. Appl. Sci. 2018, 8, 621. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.A.; Sampathkumar, A.; Longbottom, C.; Kirk, K.J. Imaging and Detection of Early Stage Dental Caries with an All-Optical Photoacoustic Microscope. In Proceedings of the 13th Anglo-French Physical Acoustics Conference (AFPAC2014), Selsdon Park Hotel, Croydon, UK, 15–17 January 2014; p. 12002. [Google Scholar]
- Lin, C.Y.; Chen, F.; Hariri, A.; Chen, C.J.; Wilder-Smith, P.; Takesh, T.; Jokerst, J.V. Photoacoustic Imaging for Noninvasive Periodontal Probing Depth Measurements. J. Dent. Res. 2018, 97, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Kim, C.; Park, S. Dual-Modal Photoacoustic and Ultrasound Imaging of Dental Implants. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Francisco, CA, USA, 19 February 2018; Oraevsky, A.A., Wang, L.V., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 10. [Google Scholar]
- Yamada, A.; Kakino, S.; Matsuura, Y. Detection of Photoacoustic Signals from Blood in Dental Pulp. Opt. Photonics J. 2016, 6, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, E.J.; de Miranda, E.M.; de Oliveira Mota, C.C.B.; Das, A.; Gomes, A.S.L. Photoacoustic Imaging of Occlusal Incipient Caries in the Visible and Near-Infrared Range. Imaging Sci. Dent. 2021, 51, 107. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.A.; Tselikov, G.; Dumas, N.; Berard, C.; Metwally, K.; Jones, N.; Al-Kattan, A.; Larrat, B.; Braguer, D.; Mensah, S.; et al. Laser- Synthesized TiN Nanoparticles as Promising Plasmonic Alternative for Biomedical Applications. Sci. Rep. 2019, 9, 1194. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, M.E.; Das, A.; Gomes, A.S.L.; Popov, A.A.; Klimentov, S.M.; Kabashin, A.V. Nonlinear Photoacoustic Response of Suspensions of Laser-Synthesized Plasmonic Titanium Nitride Nanoparticles. Opt. Lett. 2020, 45, 6695. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Photoacoustic Microscopy. Laser Photon. Rev. 2013, 7, 758–778. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, J.; Lee, D.; Baik, J.W.; Kim, C. Review on Practical Photoacoustic Microscopy. Photoacoustics 2019, 15, 100141. [Google Scholar] [CrossRef]
- Touriño, A.; Casás, L.M.; Marino, G.; Iglesias, M.; Orge, B.; Tojo, J. Liquid Phase Behaviour and Thermodynamics of Acetone+methanol+n-Alkane (C9–C12) Mixtures. Fluid Phase Equilib. 2003, 206, 61–85. [Google Scholar] [CrossRef]
- Zhang, C.; Maslov, K.; Wang, L.V. Subwavelength-Resolution Label-Free Photoacoustic Microscopy of Optical Absorption in Vivo. Opt. Lett. 2010, 35, 3195. [Google Scholar] [CrossRef]
- Zheng, S.; Yixuan, J. An Image Reconstruction Method for Endoscopic Photoacoustic Tomography in Tissues with Heterogeneous Sound Speed. Comput. Biol. Med. 2019, 110, 15–28. [Google Scholar] [CrossRef]
- Schoonover, R.W.; Anastasio, M.A. Image Reconstruction in Photoacoustic Tomography Involving Layered Acoustic Media. J. Opt. Soc. Am. A 2011, 28, 1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakovliev, A.; Ohulchanskyy, T.Y.; Ziniuk, R.; Dias, T.; Wang, X.; Xu, H.; Chen, G.; Qu, J.; Gomes, A.S.L. Noninvasive Temperature Measurement in Dental Materials Using Nd 3+, Yb 3+ Doped Nanoparticles Emitting in the Near Infrared Region. Part. Part. Syst. Charact. 2020, 37, 1900445. [Google Scholar] [CrossRef]
- Andronescu, E.; Grumezescu, A.M. Nanostructures in Therapeutic Medicine Series: Nanostructures for Oral Medicine; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 24. [Google Scholar]
Surface | Group (G) | N | Mean (mm−1) | SD | Minimum | Maximum | p-Value ¹ |
---|---|---|---|---|---|---|---|
Sound area | Control (G1) | 10 | 0.161 | 0.04 | 0.093 | 0,251 | <0.0001 |
Glycerol (G2) | 10 | 0.169 | 0.06 | 0.087 | 0.257 | <0.0001 | |
Gold Nanoparticles (G3) | 10 | 0.133 | 0.06 | 0.036 | 0.25 | 0.0001 | |
Gold Nanoparticles and Glycerol (G4) | 10 | 0.143 | 0.05 | 0.063 | 0.242 | <0.0001 | |
Nanorod (G5) | 10 | 0.135 | 0.07 | 0.007 | 0.233 | 0.0002 | |
Nanorod and glycerol (G6) | 10 | 0.168 | 0.04 | 0.086 | 0.248 | <0.0001 | |
Carious area | Control (G1) | 10 | 0.184 | 0.05 | 0.136 | 0.292 | <0.0001 |
Glycerol (G2) | 10 | 0.198 | 0.07 | 0.069 | 0.307 | <0.0001 | |
Gold Nanoparticles (G3) | 10 | 0.224 | 0.03 | 0.145 | 0.276 | <0.0001 | |
Gold Nanoparticles and Glycerol (G4) | 10 | 0.191 | 0.03 | 0.116 | 0.259 | <0.0001 | |
Nanorod (G5) | 10 | 0.214 | 0.04 | 0.158 | 0.269 | <0.0001 | |
Nanorod and glycerol (G6) | 10 | 0.224 | 0.05 | 0.109 | 0.291 | <0.0001 |
Modality | Application | Advantage | Status |
---|---|---|---|
PACT | Peripheral joints, brain, whole-body study | Real-time and tomographic imaging | Preclinical and clinical |
PAM | Molecular or cellular imaging | Microcirculation imaging without exogenous contrast | Preclinical |
PAE | Gastrointestinal or cardiovascular imaging | Gastrointestinal tract imaging | Partially clinical |
PAFC | Circulating tumor cells detection | Quantitative flow cytometry imaging | Preclinical |
mmPAI | Circulating tumor cells detection | Specific contrast enhancement availability | Preclinical |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, A.; Raposo, G.C.C.; Lopes, D.S.; da Silva, E.J.; Carneiro, V.S.M.; Mota, C.C.B.d.O.; Amaral, M.M.; Zezell, D.M.; Barbosa-Silva, R.; Gomes, A.S.L. Exploiting Nanomaterials for Optical Coherence Tomography and Photoacoustic Imaging in Nanodentistry. Nanomaterials 2022, 12, 506. https://doi.org/10.3390/nano12030506
Das A, Raposo GCC, Lopes DS, da Silva EJ, Carneiro VSM, Mota CCBdO, Amaral MM, Zezell DM, Barbosa-Silva R, Gomes ASL. Exploiting Nanomaterials for Optical Coherence Tomography and Photoacoustic Imaging in Nanodentistry. Nanomaterials. 2022; 12(3):506. https://doi.org/10.3390/nano12030506
Chicago/Turabian StyleDas, Avishek, Gisele Cruz Camboim Raposo, Daniela Siqueira Lopes, Evair Josino da Silva, Vanda Sanderana Macêdo Carneiro, Cláudia Cristina Brainer de Oliveira Mota, Marcello Magri Amaral, Denise Maria Zezell, Renato Barbosa-Silva, and Anderson Stevens Leonidas Gomes. 2022. "Exploiting Nanomaterials for Optical Coherence Tomography and Photoacoustic Imaging in Nanodentistry" Nanomaterials 12, no. 3: 506. https://doi.org/10.3390/nano12030506
APA StyleDas, A., Raposo, G. C. C., Lopes, D. S., da Silva, E. J., Carneiro, V. S. M., Mota, C. C. B. d. O., Amaral, M. M., Zezell, D. M., Barbosa-Silva, R., & Gomes, A. S. L. (2022). Exploiting Nanomaterials for Optical Coherence Tomography and Photoacoustic Imaging in Nanodentistry. Nanomaterials, 12(3), 506. https://doi.org/10.3390/nano12030506