Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dispersion Properties and SC Modes of HMM PhC Membranes
3.2. Tunability of the HMM PhCs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sakoda, K. Optical Properties of Photonic Crystals; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Lourtioz, J.M.; Benisty, H.; Gérard, J.-M.; Maystre, D.; Tchelnokov, A. Photonic Crystals; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 1995. [Google Scholar]
- Lu, L.; Joannopoulos, J.D.; Soljacic, M. Waveguiding at the Edge of a Three-Dimensional Photonic Crystal. Phys. Rev. Lett. 2012, 108, 5. [Google Scholar] [CrossRef] [Green Version]
- Colman, P.; Lunnemann, P.; Yu, Y.; Mork, J. Ultrafast Coherent Dynamics of a Photonic Crystal All-Optical Switch. Phys. Rev. Lett. 2016, 117, 233901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, W.M.; Gao, Y.; Liu, J.L. Singular Points of Polarizations in the Momentum Space of Photonic Crystal Slabs. Phys. Rev. Lett. 2020, 124, 153904. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.P.; Cole, D.C.; Jung, H.; Moille, G.T.; Srinivasan, K.; Papp, S.B. Spontaneous pulse formation in edgeless photonic crystal resonators. Nat. Photonics 2021, 15, 461–467. [Google Scholar] [CrossRef]
- Garcia-Pomar, J.L.; Nieto-Vesperinas, M. Transmission study of prisms and slabs of lossy negative index media. Opt. Express 2004, 12, 2081–2095. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Matsumoto, T. Resolution of photonic crystal superprism. Appl. Phys. Lett. 2002, 81, 2325–2327. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.L.; Zhang, X.G.; Chen, L.; Soljacic, M.; Jiang, X.Y. Super-collimation with high frequency sensitivity in 2D photonic crystals induced by saddle-type van Hove singularities. Opt. Express 2013, 21, 30140–30147. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.G.; Lin, X.L.; Jiang, X.Y. Enhanced wavelength sensitivity of the self-collimation superprism effect in photonic crystals via slow light. Opt. Lett. 2014, 39, 4486–4489. [Google Scholar] [CrossRef]
- Gao, S.; Dou, Y.S.; Li, Q.C.; Jiang, X.Y. Tunable photonic crystal lens with high sensitivity of refractive index. Opt. Express 2017, 25, 7112–7120. [Google Scholar] [CrossRef]
- Cai, W.; Shalaev, V. Optical Metamaterials; Springer: New York, NY, USA, 2010. [Google Scholar]
- Amemiya, T.; Kanazawa, T.; Yamasaki, S.; Arai, S. Metamaterial Waveguide Devices for Integrated Optics. Materials 2017, 10, 1037. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Amemiya, T.; Kagami, H.; Nishiyama, N.; Arai, S. Control of slow-light effect in a metamaterial-loaded Si waveguide. Opt. Express 2020, 28, 23198–23208. [Google Scholar] [CrossRef] [PubMed]
- Gerislioglu, B.; Ahmadivand, A. Advances in Plasmonics and Nanophotonics. Nanomaterials 2021, 11, 3159. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.; Pendry, J.B.; Tsai, D.P. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 2006, 74, 115116. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Huo, Y.; Ning, T.; Liu, R.; Zha, Z.; Shafi, M.; Li, C.; Li, S.; Xing, K.; Zhang, R.; et al. Composite Structure Based on Gold-Nanoparticle Layer and HMM for Surface-Enhanced Raman Spectroscopy Analysis. Nanomaterials 2021, 11, 587. [Google Scholar] [CrossRef]
- Azmoudeh, E.; Farazi, S. Ultrafast and low power all-optical switching in the mid-infrared region based on nonlinear highly doped semiconductor hyperbolic metamaterials. Opt. Express 2021, 29, 13504–13517. [Google Scholar] [CrossRef]
- Eyink, K.G.; Haugan, H.J.; Neal, A.T.; Mahalingam, K.; Pustovit, V.; Urbas, A. Determination of critical parameters for design of semiconductor hyperbolic metamaterials. Opt. Mater. 2021, 112, 110576. [Google Scholar] [CrossRef]
- Xiang, Y.J.; Dai, X.Y.; Wen, S.C. Omnidirectional gaps of one-dimensional photonic crystals containing indefinite metamaterials. J. Opt. Soc. Am. B Opt. Phys. 2007, 24, 2033–2039. [Google Scholar] [CrossRef]
- Pan, T.; Xu, G.D.; Zang, T.C.; Gao, L. Goos-Hanchen shift in one-dimensional photonic crystals containing uniaxial indefinite medium. Phys. Status Solidi B Basic Solid State Phys. 2009, 246, 1088–1093. [Google Scholar] [CrossRef]
- Narimanov, E.E. Photonic Hypercrystals. Phys. Rev. X 2014, 4, 041014. [Google Scholar] [CrossRef] [Green Version]
- Smolyaninov, I.I. Nonlinear optics of photonic hyper-crystals: Optical limiting and hyper-computing. J. Opt. Soc. Am. B 2019, 36, 1629–1636. [Google Scholar] [CrossRef]
- Smolyaninova, V.N.; Yost, B.; Lahneman, D.; Narimanov, E.E.; Smolyaninov, I.I. Self-assembled tunable photonic hyper-crystals. Sci. Rep. 2014, 4, 5706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shramkova, O.V.; Tsironis, G.P. Propagation of electromagnetic waves in PT-symmetric hyperbolic structures. Phys. Rev. B 2016, 94, 035141. [Google Scholar] [CrossRef]
- Cui, L.Y.; Du, G.Q.; Ng, J. Angle-independent and-dependent optical binding of a one-dimensional photonic hypercrystal. Phys. Rev. A 2020, 102, 023502. [Google Scholar] [CrossRef]
- Xia, J.Q.; Chen, Y.; Xiang, Y.J. Enhanced spin Hall effect due to the redshift gaps of photonic hypercrystals. Opt. Express 2021, 29, 12160–12168. [Google Scholar] [CrossRef]
- Antoni, T.; Kuhn, A.G.; Briant, T.; Cohadon, P.-F.; Heidmann, A.; Braive, R.; Beveratos, A.; Abram, I.; Gratiet, L.L.; Sagnes, I.; et al. Deformable two-dimensional photonic crystal slab for cavity optomechanics. Opt. Lett. 2011, 36, 3434–3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Hang, Z.H. Topological whispering gallery modes in two-dimensional photonic crystal cavities. Opt. Express 2018, 26, 21235–21241. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Fumeaux, C. Photonic crystal traps THz waves. Nat. Photonics 2014, 8, 586–587. [Google Scholar] [CrossRef]
- Li, M.; Zhirihin, D.; Gorlach, M.; Ni, X.; Filonov, D.; Slobozhanyuk, A.; Alù, A.; Khanikaev, A.B. Higher-order topological states in photonic kagome crystals with long-range interactions. Nat. Photonics 2020, 14, 89–94. [Google Scholar] [CrossRef]
- Neil, B.; Chen, X.; McCann, J.; Blair, C.; Li, J.; Zhao, C.; Blair, D. Two dimensional photonic crystal angle sensor design. Opt. Express 2021, 29, 15413–15424. [Google Scholar] [CrossRef]
- Shoaei, M.; Moravvej-Farshi, M.K.; Yousefi, L. All-optical switching of nonlinear hyperbolic metamaterials in visible and near-infrared regions. J. Opt. Soc. Am. B Opt. Phys. 2015, 32, 2358–2365. [Google Scholar] [CrossRef]
- Huo, P.C.; Zhang, S.; Liang, Y.Z.; Lu, Y.Q.; Xu, T. Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications. Adv. Opt. Mater. 2019, 7, 1801616. [Google Scholar] [CrossRef]
- Vial, A.; Laroche, T.; Dridi, M.; Le Cunff, L. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. Appl. Phys. A Mater. Sci. Process. 2011, 103, 849–853. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Popov, V.; Lavrinenko, A.V.; Novitsky, A. Surface waves on multilayer hyperbolic metamaterials: Operator approach to effective medium approximation. Phys. Rev. B 2018, 97, 125428. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.W.; Jiang, H.T.; Chen, H. Hyperbolic metamaterials: From dispersion manipulation to applications. J. Appl. Phys. 2020, 127, 071101. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, S.; Kim, S. Optical bistability based on hyperbolic metamaterials. Opt. Express 2018, 26, 11620–11632. [Google Scholar] [CrossRef] [PubMed]
- Davoyan, A.R.; Shadrivov, I.V.; Kivshar, Y.S. Self-focusing and spatial plasmon-polariton solitons. Opt. Express 2009, 17, 21732–21737. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Guan, D.Y.; Wang, W.T.; Wu, W.D.; Chen, Z.H. The inherent optical nonlinearities of thin silver films. Opt. Mater. 2004, 25, 439–443. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Wang, Q.; Lin, M.; Ouyang, Z. Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials. Nanomaterials 2022, 12, 555. https://doi.org/10.3390/nano12030555
Zheng Y, Wang Q, Lin M, Ouyang Z. Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials. Nanomaterials. 2022; 12(3):555. https://doi.org/10.3390/nano12030555
Chicago/Turabian StyleZheng, Yaoxian, Qiong Wang, Mi Lin, and Zhengbiao Ouyang. 2022. "Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials" Nanomaterials 12, no. 3: 555. https://doi.org/10.3390/nano12030555
APA StyleZheng, Y., Wang, Q., Lin, M., & Ouyang, Z. (2022). Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials. Nanomaterials, 12(3), 555. https://doi.org/10.3390/nano12030555