Preparation and Drug-Loading Properties of Amphoteric Cassava Starch Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Amphoteric Cassava Starch Nanoparticles
2.2.1. Pretreatment of Cassava Starch by Acid Hydrolysis
2.2.2. Preparation of Amphoteric Cassava Starch Nanoparticles (CA-CSNPs)
2.3. Characterization
2.4. Drug Loading and Release on CA-CSNPs
3. Results
3.1. Pretreatment of Cassava Starch by Acid Hydrolysis
3.2. Optimization for The Preparation of CA-CSNPs
3.3. FTIR and NMR Analysis of CA-CSNPs
3.4. Morphology and Crystallinity Analysis
3.5. Thermostability Analysis
3.6. Surface Charge and pH Response Analysis
3.7. Drug Loading Analysis
3.8. Drug Release Analysis
3.9. Changes in Carrier Isoelectric Point of CA-CSNPs after Loading Drug
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thielemans, W.; Belgacem, M.N.; Dufresne, A. Starch nanocrystals with large chain surface modifications. Langmuir 2006, 22, 4804–4810. [Google Scholar] [CrossRef]
- Le Corre, D.; Angellier-Coussy, H. Preparation and application of starch nanoparticles for nanocomposites: A review. React. Funct. Polym. 2014, 85, 97–120. [Google Scholar] [CrossRef]
- Le Corre, D.; Bras, J.; Dufresne, A. Starch Nanoparticles: A Review. Biomacromolecules 2010, 11, 1139–1153. [Google Scholar] [CrossRef]
- Kristo, E.; Biliaderis, C.G. Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr. Polym. 2007, 68, 146–158. [Google Scholar] [CrossRef]
- Xu, C.; Chen, C.; Wu, D. The starch nanocrystal filled biodegradable poly(epsilon-caprolactone) composite membrane with highly improved properties. Carbohydr. Polym. 2018, 182, 115–122. [Google Scholar] [CrossRef]
- Ge, S.; Xiong, L.; Li, M.; Liu, J.; Yang, J.; Chang, R.; Liang, C.; Sun, Q. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. Food Chem. 2017, 234, 339–347. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Lu, L.; Ma, Q.; Zhang, J. Preparation, characterization and systemic application of self-assembled hydroxyethyl starch nanoparticles-loaded flavonoid Morin for hyperuricemia therapy. Int. J. Nanomed. 2018, 13, 2129–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Hao, Y.; Kou, T.; Li, Q.; Gao, Q. Preparation and emulsification properties of dialdehyde starch nanoparticles. Food Chem. 2019, 286, 467–474. [Google Scholar] [CrossRef]
- Kumari, S.; Yadav, B.S.; Yadav, R.B. Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: A review. Food Res. Int. 2020, 128, 108765. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Li, D.; Liu, H.; Adhikari, B.; Wang, Q. Effect of drying and loading methods on the release behavior of ciprofloxacin from starch nanoparticles. Int. J. Biol. Macromol. 2016, 87, 55–61. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.E.; El-Rafie, M.H.; El-sheikh, M.A.; El-Feky, G.S.; Hebeish, A. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. Int. J. Biol. Macromol. 2015, 81, 718–729. [Google Scholar] [CrossRef]
- Chen, B.; Le, W.; Wang, Y.; Li, Z.; Wang, D.; Ren, L.; Lin, L.; Cui, S.; Hu, J.J.; Hu, Y.; et al. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes. Theranostics 2016, 6, 1887–1898. [Google Scholar] [CrossRef]
- Bae, Y.; Nishiyama, N.; Fukushima, S.; Koyama, H.; Yasuhiro, M.; Kataoka, K. Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property: Tumor Permeability, Controlled Subcellular Drug Distribution, and Enhanced in Vivo Antitumor Efficacy. Bioconj. Chem. 2005, 16, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Kanamala, M.; Wilson, W.R.; Yang, M.; Palmer, B.D.; Wu, Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016, 85, 152–167. [Google Scholar] [CrossRef]
- Li, S.; Huang, L.; Zhang, B.; Chen, C.; Fu, X.; Huang, Q. Fabrication and characterization of starch/zein nanocomposites with pH-responsive emulsion behavior. Food Hydrocoll. 2021, 112, 106341. [Google Scholar] [CrossRef]
- Masoudipour, E.; Kashanian, S.; Azandaryani, A.H.; Omidfar, K.; Bazyar, E. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner. Cellulose 2017, 24, 4217–4234. [Google Scholar] [CrossRef]
- Du, J.-Z.; Sun, T.-M.; Song, W.-J.; Wu, J.; Wang, J. A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery. Angew. Chem. Int. Ed. 2010, 49, 3621–3626. [Google Scholar] [CrossRef]
- Mailänder, V.; Landfester, K. Interaction of Nanoparticles with Cells. Biomacromolecules 2009, 10, 2379–2400. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, Y.; Gao, C.; Liu, M.; Zhang, X. Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release. Colloids Surf. B-Biointerfaces 2014, 115, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shan, H.; Chen, L.; He, C.; Zhuang, X.; Chen, X. Synthesis of pH-responsive starch nanoparticles grafted poly (l-glutamic acid) for insulin controlled release. Eur. Polym. J. 2013, 49, 2082–2091. [Google Scholar] [CrossRef]
- Chang, S.-Y.; Lai, H.-M. Starch-Based Multilayer with pH-Responsive Behavior Driven by Whey Protein Concentrate: The Effect of Starch Conformation. Starch-Stärke 2020, 72, 1900277. [Google Scholar] [CrossRef]
- Chauhan, V.S.; Bhardwaj, N.K. Efficacy of carbohydrate polymers in filler preflocculation for use in papermaking. Arab. J. Chem. 2019, 12, 3087–3095. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Qian, S.; Li, C.; Pan, H.; Wu, Z.; Liu, G. Synthesis, flocculation and adsorption performance of amphoteric starch. Carbohydr. Polym. 2012, 90, 275–283. [Google Scholar] [CrossRef]
- Peng, H.; Zhong, S.; Lin, Q.; Yao, X.; Liang, Z.; Yang, M.; Yin, G.; Liu, Q.; He, H. Removal of both cationic and anionic contaminants by amphoteric starch. Carbohydr. Polym. 2016, 138, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, D.; Karak, N. Double network hydrophobic starch based amphoteric hydrogel as an effective adsorbent for both cationic and anionic dyes. Carbohydr. Polym. 2020, 242, 116320. [Google Scholar] [CrossRef]
- Chang, R.; Tian, Y.; Yu, Z.; Sun, C.; Jin, Z. Preparation and characterization of zwitterionic functionalized starch nanoparticles. Int. J. Biol. Macromol. 2020, 142, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yan, S.; Mao, H.; Ji, J.; Xu, M.; Zhang, S.; Wang, J.; Liu, Y.; Sun, B. Insights into maize starch degradation by sulfuric acid from molecular structure changes. Carbohydr. Polym. 2020, 229, 115542. [Google Scholar] [CrossRef]
- Wang, S.; Blazek, J.; Gilbert, E.; Copeland, L. New insights on the mechanism of acid degradation of pea starch. Carbohydr. Polym. 2012, 87, 1941–1949. [Google Scholar] [CrossRef]
- Sajjadi, S.; Zerfa, M.; Brooks, B.W. Phase inversion in p-xylene/water emulsions with the non-ionic surfactant pair sorbitan monolaurate/polyoxyethylene sorbitan monolaurate (Span 20/Tween 20). Colloids Surf. A Physicochem. Eng. Asp. 2003, 218, 241–254. [Google Scholar] [CrossRef]
- Niemann, B.; Sundmacher, K. Nanoparticle precipitation in microemulsions: Population balance model and identification of bivariate droplet exchange kernel. J. Colloid Interface Sci. 2010, 342, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.-M.; Li, D.; Wang, L.-J.; Li, B.-Z.; Adhikari, B. Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydr. Polym. 2011, 83, 1604–1610. [Google Scholar] [CrossRef]
- Chen, F.; Cao, X.; Yu, J.; Su, H.; Wei, S.; Hong, H.; Liu, C. Quaternary Ammonium Groups Modified Starch Microspheres for Instant Hemorrhage Control. Colloids Surf. B Biointerfaces 2017, 159, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Liu, X.; Tong, C.; Liu, J.; Tang, D.; Zhao, L. Studies of poly-L-lysine-starch nanoparticle preparation and its application as gene carrier. Sci. China Ser. B Chem. 2005, 48, 162–166. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, M.; Gao, C.; Yang, J.; Zhang, X.; Zhang, X.; Liu, Z. Ultra-small and innocuous cationic starch nanospheres: Preparation, characterization and drug delivery study. Int. J. Biol. Macromol. 2013, 58, 231–239. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Choi, H.-W.; Kim, H.-S.; Lee, H.; Kim, W.; Kim, D.-O.; Kim, B.-Y.; Baik, M.-Y. Physicochemical properties of granular and non-granular cationic starches prepared under ultra high pressure. Carbohydr. Polym. 2014, 99, 385–393. [Google Scholar] [CrossRef]
- Xia, H.; Li, B.-Z.; Gao, Q. Effect of molecular weight of starch on the properties of cassava starch microspheres prepared in aqueous two-phase system. Carbohydr. Polym. 2017, 177, 334–340. [Google Scholar] [CrossRef]
- Bai, J.; Xie, X.; Li, X.; Zhang, Y. Synthesis of Octenylsuccinic Anhydride-Modified Cassava Starch in Supercritical Carbon Dioxide. Starch-Stärke 2017, 69, 1700018. [Google Scholar] [CrossRef]
- Peng, S.; Wang, H.; Zhao, W.; Xin, Y.; Liu, Y.; Yu, X.; Zhan, M.; Shen, S.; Lu, L. Zwitterionic Polysulfamide Drug Nanogels with Microwave Augmented Tumor Accumulation and On-Demand Drug Release for Enhanced Cancer Therapy. Adv. Funct. Mater. 2020, 30, 2001832. [Google Scholar] [CrossRef]
- Nakayama, A.; Tsuchiya, K.; Xu, L.; Matsumoto, T.; Makino, T. Drug-interaction between paclitaxel and goshajinkigan extract and its constituents. J. Nat. Med. 2021, 76, 59–67. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Chen, Q.; Wu, W.S.; Guo, X.D.; Cai, C.Z.; Zhang, L.J. Synthesis and evaluation of cholesterol-grafted PEGylated peptides with pH-triggered property as novel drug carriers for cancer chemotherapy. Colloids Surf. B Biointerfaces 2016, 142, 55–64. [Google Scholar] [CrossRef]
- Ringel, I.; Horwitz, S.B. Studies With RP 56976 (Taxotere): A Semisynthetic Analogue of Taxol. J. Natl. Cancer Inst. 1991, 83, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 2002, 235, 179–192. [Google Scholar] [CrossRef]
- Han, J.; Xiao, J.; Wang, H.; Chang, H.; Ma, P. Measurement and correlation of taxol solubility in methanol, ethanol and methanol-water systems. CIESC J. Chem. Ind. Eng.-China 2001, 52, 64–67. [Google Scholar]
- Sharma, N.; Kumari, R.M.; Gupta, N.; Syed, A.; Bahkali, A.H.; Nimesh, S. Poly-(Lactic-co-Glycolic) Acid Nanoparticles for Synergistic Delivery of Epirubicin and Paclitaxel to Human Lung Cancer Cells. Molecules 2020, 25, 4243. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Pentak, D.; Maciążek-Jurczyk, M.; Zawada, Z.H. The role of nanoparticles in the albumin-cytarabine and albumin-methotrexate interactions. Mater. Sci. Eng. C 2017, 73, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Wang, C.; Gong, C.; McClements, D.J.; Jin, Z.; Wang, J. Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles. Int. J. Biol. Macromol. 2020, 152, 117–125. [Google Scholar] [CrossRef]
- Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control Release 2002, 83, 273–286. [Google Scholar] [CrossRef] [Green Version]
Acid Hydrolysis Time (h) | Starch Molecular Weight (103 g·mol−1) | Diameter (nm) | Yield (%) |
---|---|---|---|
0 | 3708.20 | 869.5 ± 25.1 | 57.78 |
1 | 2034.48 | 652.2 ± 10.5 | 79.64 |
4 | 392.51 | 552.7 ± 6.1 | 81.00 |
8 | 69.31 | 382.1 ± 6.5 | 82.88 |
12 | 37.28 | 403.8 ± 9.1 | 83.12 |
24 | 8.71 | 306.9 ± 11.6 | 85.12 |
48 | 6.60 | 241.6 ± 3.6 | 88.60 |
72 | 5.32 | 263.0 ± 10.5 | 88.58 |
Samples | CHPTAC Amount (wt%) | Nitrogen Content (‰) | Phosphorus Content (‰) | rN/P (mol·mol−1) | pI |
---|---|---|---|---|---|
A-1 | 0.0 | 0.0 | 4.31 ± 0.02 | 0.0 | - |
CA-1 | 3.60 | 0.97 ± 0.03 | 4.27 ± 0.02 | 0.50 | 4.79 |
CA-2 | 3.75 | 1.03 ± 0.05 | 3.96 ± 0.03 | 0.58 | 5.38 |
CA-3 | 3.90 | 1.20 ± 0.01 | 4.20 ± 0.04 | 0.63 | 5.95 |
CA-4 | 4.05 | 1.46 ± 0.03 | 3.81 ± 0.01 | 0.84 | 6.89 |
CA-5 | 4.20 | 1.83 ± 0.02 | 3.68 ± 0.03 | 1.10 | 10.32 |
T (K) | qm (mg·g−1) | KL (×10−2 L·mg−1) | Kc (×105) | ΔG° (kJ·mol−1) | ΔH° (kJ·mol−1) | ΔS° (J·mol−1·K−1) |
---|---|---|---|---|---|---|
293.15 | 43.99 | 6.34 | 14.77 | −34.69 | −37.91 | −10.96 |
298.15 | 40.67 | 5.23 | 12.18 | −34.63 | ||
303.15 | 39.43 | 3.82 | 8.90 | −34.58 | ||
308.15 | 39.84 | 3.16 | 7.36 | −34.52 | ||
313.15 | 37.71 | 2.36 | 5.50 | −34.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Zhang, Y.; Zhu, Y.; Lan, Y. Preparation and Drug-Loading Properties of Amphoteric Cassava Starch Nanoparticles. Nanomaterials 2022, 12, 598. https://doi.org/10.3390/nano12040598
Xie X, Zhang Y, Zhu Y, Lan Y. Preparation and Drug-Loading Properties of Amphoteric Cassava Starch Nanoparticles. Nanomaterials. 2022; 12(4):598. https://doi.org/10.3390/nano12040598
Chicago/Turabian StyleXie, Xinling, Youquan Zhang, Yong Zhu, and Yiling Lan. 2022. "Preparation and Drug-Loading Properties of Amphoteric Cassava Starch Nanoparticles" Nanomaterials 12, no. 4: 598. https://doi.org/10.3390/nano12040598
APA StyleXie, X., Zhang, Y., Zhu, Y., & Lan, Y. (2022). Preparation and Drug-Loading Properties of Amphoteric Cassava Starch Nanoparticles. Nanomaterials, 12(4), 598. https://doi.org/10.3390/nano12040598