Water Uptake in Epoxy Ionic Liquid Free Film Polymer by Gravimetric Analysis and Comparison with Nondestructive Dielectric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Immersion Tests
2.4. Gravimetric Measurements
2.5. Electrical Impedance Measurements for Capacitance and Permittivity Determinations
2.6. Additional Tests
3. Results and Discussion
3.1. Contact Angle and Surface Energy
3.2. Dynamic Mechanical Analysis
3.3. Gravimetric Measurements
3.4. Electrical Impedance Analysis Methodology
3.5. Gravimetric, B-K, and Mixing Rules Comparisons
4. Conclusions
- Electrical impedance measurements can be successfully applied to detect and to quantify the relative permittivity of polymer materials with the presented mixing rule being applied instead of the Brasher–Kingsbury model, which tends to overestimate the permittivity, thus water uptake.
- Gravimetric and impedance measurements with the novel mixing rule report the same water uptake behavior: both mass and the permittivity increase as the water diffuses in the polymer matrix;
- Ionic liquid used as alternative to amine hardener reduces the water uptake compared to conventional epoxy–amine system: lower diffusion coefficient of water and a lower saturation limit due to better hydrophobic properties but also due to the different chemistry of the networks.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- May, C. Epoxy Resins: Chemistry and Technology, 2nd ed.; Routledge: London, UK, 2018; ISBN 978-1-351-44995-3. [Google Scholar]
- Lee, H.; Neville, K. Handbook of Epoxy Resins; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Ou, B.; Wang, Y.; Lu, Y. A review on fundamentals and strategy of epoxy-resin-based anticorrosive coating materials. Polym.-Plast. Technol. Mater. 2021, 60, 601–625. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Z.; Wang, S.; Liu, J.; Xing, X.; Li, Z.; Wang, B. A comprehensive review on smart anti-corrosive coatings. Prog. Org. Coat. 2020, 148, 105821. [Google Scholar] [CrossRef]
- Livi, S.; Silva, A.; Thimont, Y.; Nguyen, T.K.L.; Soares, B.; Gerard, J.-F.; Duchet, J. Nanostructured thermosets from ionic liquid building block–epoxy prepolymer mixtures. RSC Adv. 2014, 4, 28099. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.K.L.; Livi, S.; Pruvost, S.; Soares, B.G.; Duchet-Rumeau, J. Ionic liquids as reactive additives for the preparation and modification of epoxy networks. J. Polym. Sci. Part Polym. Chem. 2014, 52, 3463–3471. [Google Scholar] [CrossRef]
- Ionic liquids: A New Route for the Design of Epoxy Networks|ACS Sustainable Chemistry & Engineering. Available online: https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.5b00953 (accessed on 3 December 2021).
- Leclère, M.; Livi, S.; Maréchal, M.; Picard, L.; Duchet-Rumeau, J. The properties of new epoxy networks swollen with ionic liquids. RSC Adv. 2016, 6, 56193–56204. [Google Scholar] [CrossRef]
- Sonnier, R.; Dumazert, L.; Livi, S.; Nguyen, T.K.L.; Duchet-Rumeau, J.; Vahabi, H.; Laheurte, P. Flame retardancy of phosphorus-containing ionic liquid based epoxy networks. Polym. Degrad. Stab. 2016, 134, 186–193. [Google Scholar] [CrossRef]
- Ghali, E.; Sastri, V.S.; Elboujdaini, M. Corrosion Prevention and Protection: Practical Solutions; John Wiley&Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Talbot, D.E.J.; Talbot, J.D.R. Corrosion Science and Technology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Fazende, K.F. Preparation and Detection of Degradation and Chain Scission Events in Epoxy-Amine Networks Using a Profluorescent Nitroxide Probe. Honors Thesis, The University of Southern Mississippi, Hattiesburg, MS, USA, 2013. [Google Scholar]
- Krauklis, A.E.; Echtermeyer, A.T. Mechanism of Yellowing: Carbonyl Formation during Hygrothermal Aging in a Common Amine Epoxy. Polymers 2018, 10, 1017. [Google Scholar] [CrossRef] [Green Version]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975; ISBN 978-0-19-853344-3. [Google Scholar]
- Gurtin, M.E.; Yatomi, C. On a Model for Two Phase Diffusion in Composite Materials. J. Compos. Mater. 1979, 13, 126–130. [Google Scholar] [CrossRef]
- Ollivier-Lamarque, L.; Lallart, M.; Mary, N.; Uchimoto, T.; Livi, S.; Marcelin, S.; Miki, H. Dielectric analysis of water uptake in polymer coating using spatially defined Fick’s law and mixing rule. Prog. Org. Coat. 2020, 148, 105846. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.N.; Perrin, F.X.; Vernet, J.L. Water permeability of organic/inorganic hybrid coatings prepared by sol–gel method: A comparison between gravimetric and capacitance measurements and evaluation of non-Fickian sorption models. Corros. Sci. 2005, 47, 397–412. [Google Scholar] [CrossRef]
- Shi, B. Connection between dielectric constant and total number of hydrogen-bond groups per cation–anion pair in ionic liquids. J. Mol. Liq. 2020, 299, 112216. [Google Scholar] [CrossRef]
- Ganjaee Sari, M.; Ramezanzadeh, B.; Shahbazi, M.; Pakdel, A.S. Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposite. Corros. Sci. 2015, 92, 162–172. [Google Scholar] [CrossRef]
- Vosgien Lacombre, C.; Bouvet, G.; Trinh, D.; Mallarino, S.; Touzain, S. Water uptake in free films and coatings using the Brasher and Kingsbury equation: A possible explanation of the different values obtained by electrochemical Impedance spectroscopy and gravimetry. Electrochim. Acta 2017, 231, 162–170. [Google Scholar] [CrossRef]
- De Parscau du Plessix, B.; Jacquemin, F.; Lefébure, P.; Le Corre, S. Characterization and modeling of the polymerization-dependent moisture absorption behavior of an epoxy-carbon fiber-reinforced composite material. J. Compos. Mater. 2016, 50, 2495–2505. [Google Scholar] [CrossRef]
- Brug, G.J.; van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Hsu, C.H.; Mansfeld, F. Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance. Corrosion 2001, 57, 747–748. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films II. Applications. J. Electrochem. Soc. 2010, 157, C458–C463. [Google Scholar] [CrossRef]
- Amand, S.; Musiani, M.; Orazem, M.E.; Pébère, N.; Tribollet, B.; Vivier, V. Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings. Electrochim. Acta 2013, 87, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Brasher, D.M.; Kingsbury, A.H. Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water-uptake. J. Appl. Chem. 1954, 4, 62–72. [Google Scholar] [CrossRef]
- Bierwagen, G.; Tallman, D.; Li, J.; He, L.; Jeffcoate, C. EIS studies of coated metals in accelerated exposure. Prog. Org. Coat. 2003, 46, 149–158. [Google Scholar] [CrossRef]
- Sykes, J.M. A variant of the Brasher–Kingsbury equation. Corros. Sci. 2004, 46, 515–517. [Google Scholar] [CrossRef]
- Levy, O.; Stroud, D. Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers. Phys. Rev. B 1992, 56, 8035–8046. [Google Scholar] [CrossRef] [Green Version]
- Havriliak, S.; Negami, S. A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. Part. C Polym. Symp. 1966, 14, 99–117. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161–210. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics II. Direct Current Characteristics. J. Chem. Phys. 1942, 10, 98–105. [Google Scholar] [CrossRef]
- Livi, S.; Gérard, J.-F.; Duchet-Rumeau, J. Ionic Liquids as Polymer Additives. In Applications of Ionic Liquids in Polymer Science and Technology; Mecerreyes, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–21. ISBN 978-3-662-44903-5. [Google Scholar]
- Silva, A.A.; Livi, S.; Netto, D.B.; Soares, B.G.; Duchet, J.; Gérard, J.-F. New epoxy systems based on ionic liquid. Polymer 2013, 54, 2123–2129. [Google Scholar] [CrossRef]
- Soares, B.; Livi, S.; Duchet, J.; Gerard, J.-F. Preparation of epoxy/MCDEA networks modified with ionic liquids. Polymer 2012, 53, 60–66. [Google Scholar] [CrossRef]
- Hao, J.; Xu, X.; Taylor, N. Non-contact method to reduce contact problems between sample and electrode in dielectric measurements. High Volt. 2020, 5, 753–761. [Google Scholar] [CrossRef]
- Saeedi, I.A.; Chaudhary, S.; Andritsch, T.; Vaughan, A.S. Investigation of the functional network modifier loading on the stoichiometric ratio of epoxy resins and their dielectric properties. J. Mater. Sci. 2021, 56, 12948–12964. [Google Scholar] [CrossRef]
- Yu, J.; Huo, R.; Wu, C.; Wu, X.; Wang, G.; Jiang, P. Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites. Macromol. Res. 2012, 20, 816–826. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Livi, S.; Silva, A.A.; Pereira, J.; Nguyen, T.K.L.; Soares, B.G.; Cardoso, M.B.; Gérard, J.-F.; Duchet-Rumeau, J. Supercritical CO2–organosilane mixtures for modification of silica: Applications to epoxy prepolymer matrix. Chem. Eng. J. 2014, 241, 103–111. [Google Scholar] [CrossRef]
- Van de Grampel, R.D.; Ming, W.; van Gennip, W.J.H.; van der Velden, F.; Laven, J.; Niemantsverdriet, J.W.; van der Linde, R. Thermally cured low surface-tension epoxy films. Polymer 2005, 46, 10531–10537. [Google Scholar] [CrossRef]
- Yang, G.; Fu, S.-Y.; Yang, J.-P. Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer 2007, 48, 302–310. [Google Scholar] [CrossRef]
- Linde, E.; Giron, N.H.; Celina, M.C. Water diffusion with temperature enabling predictions for sorption and transport behavior in thermoset materials. Polymer 2018, 153, 653–667. [Google Scholar] [CrossRef]
- Hoseinpoor, M.; Prošek, T.; Babusiaux, L.; Mallégol, J. Simplified approach to assess water uptake in protective organic coatings by parallel plate capacitor method. Mater. Today Commun. 2021, 26, 101858. [Google Scholar] [CrossRef]
- Deflorian, F.; Fedrizzi, L.; Rossi, S.; Bonora, P.L. Organic coating capacitance measurement by EIS: Ideal and actual trends. Electrochim. Acta 1999, 44, 4243–4249. [Google Scholar] [CrossRef]
- Yin, X.; Hutchins, D.A.; Chen, G.; Li, W. Investigations into the measurement sensitivity distribution of coplanar capacitive imaging probes. NDT E Int. 2013, 58, 1–9. [Google Scholar] [CrossRef]
- Jang, C.; Sharifi, M.; Palmese, G.R.; Abrams, C.F. Crosslink network rearrangement via reactive encapsulation of solvent in epoxy curing: A combined molecular simulation and experimental study. Polymer 2014, 55, 3859–3868. [Google Scholar] [CrossRef]
- Kaatze, U. Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data 1989, 34, 371–374. [Google Scholar] [CrossRef]
- Wobschall, D. A Theory of the Complex Dielectric Permittivity of Soil Containing Water: The Semidisperse Model. IEEE Trans. Geosci. Electron. 1977, 15, 49–58. [Google Scholar] [CrossRef]
- Schwan, H.P.; Sheppard, R.J.; Grant, E.H. Complex permittivity of water at 25 °C. J. Chem. Phys. 1976, 64, 2257–2258. [Google Scholar] [CrossRef]
Sample | Hardener Ratio (phr) | Average Initial Thickness (mm) | Initial Mass (mg) |
---|---|---|---|
epoxy amine | 63 | 1.12 ± 0.03 | 839.4 ± 0.2 |
epoxy IL | 10 | 1.14 ± 0.03 | 905.3 ± 0.2 |
Sample | H2O Contact Angle (/°) | CH2I2 Contact Angle (/°) | Dispersive Part (mJ·m−2) | Polar Part (mj·m−2) | Total Energy (mj·m−2) |
---|---|---|---|---|---|
Epoxy amine raw | 76 | 53 | 27.3 | 8.7 | 36 |
Epoxy amine polished | 84 | 53 | 29.1 | 4.5 | 33.5 |
Epoxy IL raw | 106 | 78 | 18.0 | 0.8 | 18.8 |
Epoxy IL polished | 89 | 55 | 28.6 | 3.0 | 31.6 |
Sample | Dw (cm2·s−1) | |
---|---|---|
epoxy–D400 | 8.0 × 10−9 ± 1 | 2.2 ± 0.1 |
epoxy–IL | 3.6 × 10−9 ± 1 | 0.6 ± 0.2 |
Parameters | Epoxy–Amine | Epoxy–IL | Water |
---|---|---|---|
3.45 | 3.57 | 80 | |
2.79 | 3.14 | 12 | |
(rad·s−1) | 2.5π106 | 3.6π106 | 200π |
0.63 | 0.53 | 0.87 | |
ρ (kg·m−3) | 1123 | 1134 | 1040 |
) | 2.16 | 0.65 | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ollivier-Lamarque, L.; Livi, S.; Uchimoto, T.; Mary, N. Water Uptake in Epoxy Ionic Liquid Free Film Polymer by Gravimetric Analysis and Comparison with Nondestructive Dielectric Analysis. Nanomaterials 2022, 12, 651. https://doi.org/10.3390/nano12040651
Ollivier-Lamarque L, Livi S, Uchimoto T, Mary N. Water Uptake in Epoxy Ionic Liquid Free Film Polymer by Gravimetric Analysis and Comparison with Nondestructive Dielectric Analysis. Nanomaterials. 2022; 12(4):651. https://doi.org/10.3390/nano12040651
Chicago/Turabian StyleOllivier-Lamarque, Lucas, Sébastien Livi, Tetsuya Uchimoto, and Nicolas Mary. 2022. "Water Uptake in Epoxy Ionic Liquid Free Film Polymer by Gravimetric Analysis and Comparison with Nondestructive Dielectric Analysis" Nanomaterials 12, no. 4: 651. https://doi.org/10.3390/nano12040651
APA StyleOllivier-Lamarque, L., Livi, S., Uchimoto, T., & Mary, N. (2022). Water Uptake in Epoxy Ionic Liquid Free Film Polymer by Gravimetric Analysis and Comparison with Nondestructive Dielectric Analysis. Nanomaterials, 12(4), 651. https://doi.org/10.3390/nano12040651