Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties
Abstract
:1. Introduction
1.1. Characteristics of Bone Cements
1.2. Introducing the Bioactivity
1.3. Introducing the Antibacterial Properties
1.4. Influence of Strengthening Additives on Mechanical Behavior
1.5. Influence of Antibiotics on Mechanical Behavior
1.6. Influence of Nanomaterials on Mechanical Behavior
1.7. Aim of the Research
2. Materials and Methods
2.1. Preparation of Samples
2.2. Bacterial Testing
2.3. Cell Viability
2.4. Contact Angle Tests
2.5. Compressive Strength Test
3. Results
3.1. Bacterial Tests
3.2. Cytotoxicity Tests
3.3. Wettability Tests
3.4. Compression Tests
4. Discussion
4.1. Antibacterial Effectiveness and Cytotoxicity
4.2. Wettability
4.3. Mechanical Behavior
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motameni, A.; Alshemary, A.Z.; Evis, Z. A review of synthesis methods, properties and use of monetite cements as filler for bone defects. Ceram. Int. 2021, 47, 13245–13256. [Google Scholar] [CrossRef]
- Ginebra, M.-P.; Montufar, E.B. Cements as bone repair materials. In Woodhead Publishing Series in Biomaterials, Bone Repair Biomaterials, 2nd ed.; Kendell, M., Pawelec, J., Planell, A., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 233–271. [Google Scholar] [CrossRef]
- Rey-Vinolas, S.; Engel, E.; Mateos-Timoneda, M.A. Polymers for bone repair. In Woodhead Publishing Series in Biomaterials, Bone Repair Biomaterials, 2nd ed.; Kendell, M., Pawelec, J., Planell, A., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 179–197. [Google Scholar] [CrossRef]
- Sayeed, Z.; Padela, M.T.; El-Othmani, M.M.; Saleh, K.J. Woodhead Publishing Series in Biomaterials, Bone Repair Biomaterials, 2nd ed.; Ambrosio, L., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 199–214. [Google Scholar] [CrossRef]
- Raju, V.; Mayank, C.; Abhishek, V. Bone cement—Review article. J. Clin. Orthop. Trauma 2013, 4, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Cools, P.; De Geyter, N.; Vanderleyden, E.; Barberis, F.; Dubruel, P.; Morent, R. Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization. Surf. Coat. Techn. 2016, 294, 201–209. [Google Scholar] [CrossRef]
- Cecen, B.; Kalemtas, A.; Topates, G.; Kozaci, L.D. Cellular response to calcium phosphate cements. In Woodhead Publishing Series in Biomaterials, Bone Repair Biomaterials, 2nd ed.; Mozafari, M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 369–393. [Google Scholar] [CrossRef]
- Kucko, N.W.; Herber, R.-P.; Leeuwenburgh, S.; Jansen, J.A. Calcium Phosphate Bioceramics and Cements. In Principles of Regenerative Medicine, 3rd ed.; Atala, A., Lanza, R., Mikos, A.G., Nerem, R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 591–611. [Google Scholar] [CrossRef]
- Hurle, K.; Oliveira, J.M.; Reis, R.L.; Pina, S.; Goetz-Neunhoeffer, F. Ion-doped brushite cements for bone regeneration. Acta Biomater. 2021, 123, 51–71. [Google Scholar] [CrossRef]
- Bishop, N.E.; Ferguson, S.; Tepic, S. Porosity reduction in bone cement at the cement—Stem interface. J. Bone Jt. Surg. 1996, 78, 349–356. [Google Scholar] [CrossRef]
- Donaldson, A.J.; Thomson, H.E.; Harper, J.; Kenny, N.W. Bone cement implantation syndrome. Oxf. J. Medic. Health BJA 2009, 102, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, K.; Pradellok, W. Bone cements. In Biomaterials (Vol. 4). Problems of Biocybernetics and Biomedical Engineering; Nałęcz, W., Ed.; Publ. House of Commun.: Warszawa, Poland, 1990; pp. 251–263. [Google Scholar]
- Kubota, M.; Yokoi, T.; Ogawa, T.; Saito, S.; Furuya, M.; Yokota, K.; Kanetaka, H.; Jeyadevan, B.; Kawashita, M. In-vitro heat-generating and apatite-forming abilities of PMMA bone cement containing TiO2 and Fe3O4. Ceram. Int. 2021, 47, 12292–12299. [Google Scholar] [CrossRef]
- Pahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Kharaziha, M.; Kasiri-Asgarani, M.; Omidi, M.; Razzaghi, M.; Ismail, A.F.; Sharif, S.; Rama Krishna, S.; Berto, F. CNT and rGo reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response. J. Mech. Behav. Biomed. Mater. 2021, 116, 104320. [Google Scholar] [CrossRef]
- Pahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; Aziz, M.; Chen, X.B. Development of PMMA-Mon-CNT bone cement with superior mechanical properties and favorable biological properties for use in bone-defect treatment. Mater. Lett. 2019, 240, 9–12. [Google Scholar] [CrossRef]
- Pahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Hamzah, E. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and grapheme oxide bone cements. J. Mech. Behav. Biomed. Mater. 2018, 82, 257–267. [Google Scholar] [CrossRef]
- Wang, C.; Yu, B.; Fan, Y.; Ormsby, R.W.; McCarthy, H.O.; Dunne, N.; Li, X. Incorporation of multi-walled carbon nanotubes to PMMA bone cement improves cytocompatibility and osseointegration. Mater. Sci. Eng. C 2019, 103, 109823. [Google Scholar] [CrossRef]
- Xu, D.; Song, W.; Zhang, J.; Liu, Y.; Lu, Y.; Zhang, X.; Liu, Q.; Yuan, T.; Liu, R. Osteogenic effect of polymethyl methacrylate bone cement with surface modification of lactoferrin. J. Biosci. Bioeng. 2021, 132, 132–139. [Google Scholar] [CrossRef]
- Tavakoli, M.; Eil Bakhtiari, S.S.; Karbasi, S. Incorporation of chitosan/grapheme oxide nanocomposite into the PMMA bone cement: Physical, mechanical and biological evaluation. Int. J. Bio. Macromol. 2020, 149, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Wentao, Z.; Lei, G.; Liu, Y.; Wang, W.; Song, T.; Fan, J. Approach to osteomyelitis treatment with antibiotic loaded PMMA. Microbal. Pathog. 2017, 102, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Kojima, K.E.; de Andrade e Silva, F.B.; de Camargo Leonhardt, M.; de Carvalho, V.C.; de Oliveira, P.R.D.; Lima, A.L.L.M.; dos Reis, P.R.; dos Santos Silva, J. Bioactive glass S53P4 to fill-up large cavitary bone defect after acute and chronic osteomyelitis treated with antibiotic—loaded cement beads: A prospective case series with a minimum 2-year follow-up. Injury 2021, 52, S23–S28. [Google Scholar] [CrossRef] [PubMed]
- Paz, E.; Sanz-Ruiz, P.; Abenojar, J.; Vaquero-Martin, J.; Forriol, F.; del Real, J.C. Evaluation of elution and mechanical properties ofhigh-dose antibiotic-loaded bone cement: Comparative in vitro study of the influence of vancomycin and cefazolin. J. Arthoplasty 2021, in press. [Google Scholar] [CrossRef]
- Carbo-Laso, E.; Sanz-Ruiz, P.; del Real-Romero, J.C.; Ballesteros-Iglesias, Y.; Paz-Jimenez, E.; Aran-Ais, F.; Sanchez-Navarro, M.; Perez-Liminana, M.A.; Lopez-Torres, I.; Vaquero-Martin, J. New method for antibiotic release from bone cement (polymethylmethacrylate): Redefining boundaries. Rev. Esp. Cir. Ortopd. Traumatol. 2018, 62, 86–92. [Google Scholar] [CrossRef]
- Dunne, N.J.; Hill, J.; McAfee, P.; Kirkpatrick, R.; Patrick, S.; Tunney, M. Incorporation of large amounts of gentamicin sulphate into acrylic bone cement: Effect on handling and mechanical properties, antibiotic release and biofilm formation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2008, 222, 355–365. [Google Scholar] [CrossRef]
- Karaglani, M.; Tzitzikou, E.; Tottas, S.; Kougioumtzis, I.; Arvanitidis, K.; Kolios, G.; Chatzaki, E.; Drosos, G.I. Gentamycin elution from polymethylmethacrylate and bone graft substitute: Comparison between commercially available and home-made preparations. J. Orthop. 2020, 19, 9–13. [Google Scholar] [CrossRef]
- Mensah, L.M.; Love, B.J. A meta-analysis of bone cement mediated antibiotic release: Overkill, but a viable approach to eradicate osteomyelitis and other infections tied to open procedures. Mater. Sci. Eng. C 2021, 123, 111999. [Google Scholar] [CrossRef]
- Czuban, M.; Wulsten, D.; Wang, L.; Di Luca, M.; Trampuz, E. Release of different amphotericin B formulations from PMMA bone cements and their activity against Candida biofilm. Colloids Surf. B Biointerfaces 2019, 183, 110406. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, M.J.; Tetreault, M.W.; Lewallen, D.G.; Perry, K.I.; Hanssen, A.D.; Abdel, M.P. Total femur antibiotic spacers: Effective salvage for complex periprosthetic joint infections. J. Arthoplast. 2021, 36, 2567–2574. [Google Scholar] [CrossRef] [PubMed]
- Meeker, D.G.; Cooper, K.B.; Renard, R.L.; Mears, S.C.; Smelzer, M.S.; Barnes, C.L. Comparative study of antibiotic elution profiles from alternative formulations of polymethylmethacrylate bone cement. J. Arthroplast. 2019, 34, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, S.; Liu, Y.; Christensen, R.; Raina, D.B.; Tagil, M.; Lidgren, L. Antibiotic containing bone cement in prevention of hip and knee prosthetic joint infections: A systematic review and meta-analysis. J. Orthop. Transl. 2020, 23, 53–60. [Google Scholar] [CrossRef]
- Shen, S.-C.; Letchmanan, K.; Chow, P.S.; Tan, R.B.H. Antibiotic elution and mechanical property of TiO2 nanotubes functionalized PMMA-based bone cements. J. Mech. Behav. Biomed. Mater. 2019, 91, 91–98. [Google Scholar] [CrossRef]
- Chou, C.; Chang, J.-L.; Zen, J.-M. Spherical and Anisotropic Copper Nanomaterials in Medical Diagnosis. In Metallic Nanomaterials; Kumar, C.S.S.R., Ed.; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Woldemariam, M.H.; Belingardi, G.; Koricho, E.G.; Reda, D.T. Effects of nanomaterials and particles on mechanical properties and fracture toughness of composite materials: A short review. AIMS Mater. Sci. 2019, 6, 1191–1212. [Google Scholar] [CrossRef]
- Bapat, R.A.; Chaubal, T.V.; Joshi, C.P.; Bapat, P.R.; Choudhury, H.; Pandey, M.; Gorain, B.; Kesharwani, P. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng. C 2018, 91, 881–898. [Google Scholar] [CrossRef]
- Alt, V.; Bechert, T.; Steinrucke, P.; Wagener, M.; Seidel, P.; Dingeldein, E.; Domann, E.; Schnettler, R. An in vivo assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004, 25, 4383–4391. [Google Scholar] [CrossRef]
- Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010, 28, 580–588. [Google Scholar] [CrossRef]
- Wekwejt, M.; Moritz, M.; Świeczko-Żurek, B.; Pałubicka, A. Biomechanical testing of bioactive bone cement—a comparison of the impact of modifiers: Antibiotics and nanometals. Polym. Test. 2018, 70, 234–243. [Google Scholar] [CrossRef]
- Wekwejt, M.; Michalska-Sionkowska, M.; Bartmański, M.; Nadolska, M.; Łukowicz, K.; Pałubicka, A.; Osyczka, A.M.; Zieliński, A. Influence of several biodegradable components addend to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. Mat. Sci. Eng. C 2020, 117, 111286. [Google Scholar] [CrossRef] [PubMed]
- Miola, M.; Bruno, M.; Maina, G.; Fucale, G.; Lucchetta, G.; Verne, E. Antibiotic-free composite bone cements with antibacterial and bioactive properties. A preliminary study. Mater. Sci. Eng. C 2014, 43, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Prokopovich, P.; Leech, R.; Parkin, I.P.; Perni, S. A novel bone cement impregnated with silver-tiopronim nanoparticles: Its antimicrobial, cytotoxic and mechanical properties. Int. J. Nanomed. 2013, 8, 2227–2237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slane, J.; Vivanco, J.; Rose, W.; Ploeg, H.-L.; Squire, M. Mechanical, material and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater. Sci. Eng. C 2015, 48, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.; Gloria, A.; De Santis, R.; D’Amora, U.; Balato, G.; Vollaro, A.; Oliviero, O.; Improta, G.; Triassi, M.; Ambrosio, L. Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. Bioact. Mater. 2017, 2, 156–161. [Google Scholar] [CrossRef]
- Liang, Z.C.; Yang, C.; Ding, X.; Hedrick, J.L.; Wang, W.; Yang, Y.Y. Carboxylic acid-functionalized polycarbonates as bone cement additives for enhanced and sustained release of antibiotics. J. Control. Release 2021, 329, 871–881. [Google Scholar] [CrossRef]
- Phakatkar, A.H.; Shirdar, M.R.; Qi, M.; Taheri, M.M.; Narayanan, S.; Foroozan, T.; Sharifi-Asl, S.; Huang, Z.; Agrawal, M.; Lu, Y.; et al. Novel PMMA bone cement nanocomposite containing magnesium phosphate nanosheets and hydroxyapatite nanofibers. Mater. Sci. Eng. C 2020, 109, 110497. [Google Scholar] [CrossRef]
- Wekwejt, M.; Świeczko-Żurek, B. Bioactivity and biofunctionality of bone cement. In Trends and Technological Solutions: Responses to the Needs of Modern Society; Gdańsk University of Technology: Gdańsk, Poland, 2017; Volume 1, pp. 202–211. [Google Scholar]
- Standard ASTM F 451-08; Standard Specification for Acrylic Bone Cement. ASTM International: West Conshohocken, PA, USA, September 2008.
- Standard ISO 5833:2002; Implants for Surgery—Acrylic Resin Cements. ISO 2002: Geneva, Switzerland, 2002.
- Kuhn, K.D. Bone Cements; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Driessens, F.C.M.; Planell, J.A.; Boltong, M.G.; Khairoun, I.; Ginebra, M.P. Osteotransductive bone cements. J. Eng. Med. 1998, 212, 427–435. [Google Scholar] [CrossRef]
- Nowacki, J.; Dobrzański, L.A.; Gustavo, F. Intramedullary implants in the osteosynthesis of long bones. Bonding biomaterials and implant components. Sci. Int. J. World Acad. Mater. Manufact. Eng. 2012, 111, 114–129. [Google Scholar]
- Tuncer, K.; Gur, B.; Senol, O.; Aydin, M.R.; Gungogdu, O. New bone cements with Pluronic F127 for prophylaxis and treatment of periprosthetic joint infections. J. Mech. Behav. Biomed. Mater. 2012, 119, 104496. [Google Scholar] [CrossRef]
- Baleani, M.; Persson, C.; Zolezzi, C.; Andollina, A.; Borrelli, A.M.; Tigani, D. Biological and biomechanical effects of vancomycin and meropenem in acrylic bone cement. J. Arthroplast. 2008, 23, 1232–1238. [Google Scholar] [CrossRef]
- Cacciola, G.; De Meo, F.; Cavaliere, P. Mechanical and elution properties of G3 low viscosity bone cement loaded up to three antibiotics. J. Orthop. 2018, 15, 1004–1007. [Google Scholar] [CrossRef]
- Wu, Q.; Miao, W.-S.; Zhang, Y.-D.; Gao, H.-J.; Hui, D. Mechanical properties of nanomaterials: A review. Nanotechn. Rev. 2020, 9, 259–273. [Google Scholar] [CrossRef]
- Khaled, S.M.Z.; Charpentier, P.A.; Rizkalla, A.S. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. J. Biomater. Appl. 2011, 25, 515–537. [Google Scholar] [CrossRef]
- Gao, S.; Lv, Y.; Yuan, L.; Ren, H.; Wu, T.; Liu, B.; Zhang, Y.; Zhou, R.; Li, A.; Zhou, F. Improved bone ingrowth of tricalcium phosphate filled Poly (methyl metacrylate) (PMMA) bone cements in vivo. Polym. Test. 2019, 76, 513–521. [Google Scholar] [CrossRef]
- Letchmanan, K.; Shen, S.-C.; Ng, W.K.; Kingshuk, P.; Shi, Z.; Wang, W.; Tan, R. Mechanical properties and antibiotic release characteristic of poly (methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles. J. Mech. Behav. Biomed. Mat. 2017, 72, 163–170. [Google Scholar] [CrossRef]
- Paiva, L.; Fidalgo, T.K.S.; da Costa, L.P.; Maia, L.C.; Balan, L.; Anselme, K.; Ploux, I. Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC). J. Dent. 2018, 69, 102–109. [Google Scholar] [CrossRef]
- Paz, E.; Forriol, F.; del Real, J.C.; Dunne, N.J. Graphene oxide versus graphene for optimization of PMMA bone cement for orthopaedic applications. Mater. Sci. Eng. C 2017, 77, 1003–1011. [Google Scholar] [CrossRef]
- Paz, E.; Ballesteros, Y.; Forriol, F.; Dunne, N.J.; del Real, J.C. Graphene and graphene oxide functionalisation with silanes for advanced dispersion and reinforcement of PMMA-based bone cements. Mater. Sci. Eng. C 2019, 104, 109946. [Google Scholar] [CrossRef]
- Du, S.; Wu, J.; Al Shareedah, O.; Shi, X. Nanotechnology in Cement-Based Materials: A Review of Durability, Modeling, and Advanced Characterization. Nanomaterials 2019, 9, 1213. [Google Scholar] [CrossRef] [Green Version]
- De Santis, R.; Russo, T.; Rau, J.V.; Papallo, I.; Martorelli, M.; Gloria, A. Design of 3D Additively Manufactured Hybrid Structures for Cranioplasty. Materials 2021, 14, 181. [Google Scholar] [CrossRef]
- Russo, T.; De Santis, R.; Gloria, A.; Barbaro, K.; Altigeri, A.; Fadeeva, I.V.; Rau, J.V. Modification of PMMA Cements for Cranioplasty with Bioactive Glass and Copper Doped Tricalcium Phosphate Particles. Polymers 2020, 12, 37. [Google Scholar] [CrossRef] [Green Version]
- ASTM F451-16; Standard Specification for Acrylic Bone Cement. ASTM International: West Conshohocken, PA, USA, October 2016.
- Świeczko-Żurek, B. Method of Assessing Biodegradation of Metallic Implants, a Method of Obtaining a Bacterial Solution for Assessing Biodegradation of Metallic Implants and a Bacterial Composition for Assessing Biodegradation of Metallic Implants. Poland Patent Application No. 409082, 4 August 2015. [Google Scholar]
- Satyavani, K.; Gurudeeban, S.; Ramanathan, T.; Balasubramanian, T. Toxicity Study of Silver Nanoparticles Synthesized from Suaeda monoica on Hep-2 Cell Line. Avicenna J. Med. Biotechnol. 2012, 4, 35–39. [Google Scholar]
- Fahmy, H.M.; Ebrahim, N.M.; Gaber, M.H. In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. J. Trace Elem. Med. Biol. 2020, 60, 126481. [Google Scholar] [CrossRef]
- Greulich, C.; Diendorf, J.; Gessmann, J.; Simon, T.; Habijan, T.; Eggeler, G.; Schildhauer, T.A.; Epple, M.; Koller, M. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater. 2011, 7, 3505–3514. [Google Scholar] [CrossRef]
- Cao, H.; Liu, X.; Meng, F.; Chu, P.K. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 2011, 32, 693–705. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [Green Version]
- Wekwejt, M.; Michno, A.; Truchan, K.; Pałubicka, A.; Świeczko-Żurek, B.; Osyczka, A.M.; Zieliński, A. Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration. Nanomaterials 2019, 9, 1114. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.C.; Luo, J.P.; Huang, Y.J.; Sun, J.F.; Zhu, Z.; Xu, J.; Dargusch, M.S.; Yan, M. Immunological response triggered by metallic 3D printing powders. Addit. Manufact. 2020, 35, 101392. [Google Scholar] [CrossRef]
- Ginting, B.; Maulana, I.; Karnila, I. Biosynthesis copper nanoparticles using blumea balsamifera leaf extracts: Characterization of its antioxidant and cytotoxicity activities. Surf. Interfaces 2020, 21, 100799. [Google Scholar] [CrossRef]
- Ismail, N.A.; Shameli, K.; Wong, M.M.-T.; Teow, S.-Y.; Chew, J.; Sukri, S.N.A.M. Antibacterial and cytotoxic effect of honey mediated copper nanoparticles synthesized using ultrasonic assistance. Mater. Sci. Eng. C 2019, 104, 109899. [Google Scholar] [CrossRef]
- Poornavaishnavi, C.; Gowthami, R.; Srikanth, K.; Bramhachari, P.V. Nickel nanoparticles induces cytotoxicity, cell morphology and oxidative stress in bluegill sunfish (BF-2) cells. Appl. Surf. Sci. 2019, 483, 1174–1181. [Google Scholar] [CrossRef]
- Lu, X.; Bao, X.; Huang, Y.; Qu, Y.; Lu, H.; Lu, Z. Mechanisms of cytotoxicity of nickel ions based on gene expression profiles. Biomaterials 2009, 30, 141–148. [Google Scholar] [CrossRef]
- Marciano, F.R.; Bonetti, L.F.; Mangolin, J.F.; Da-Silva, N.S.; Corat, E.J.; Trava-Airoldi, V.J. Investigation into the antibacterial property and bacterial adhesion of diamond-like carbon films. Vacuum 2011, 85, 662–666. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Q.; Liu, Y.; Wang, S.; Abel, E.W. Reduction of bacterial adhesion on modified DLC coatings. Coll. Surf. B Biointerfaces 2008, 61, 182–187. [Google Scholar] [CrossRef]
- Wang, H.; Tang, B.; Li, X.; Fan, A. Bacteria adherence properties of nitrogen-doped TiO2 coatings by plasma surface alloying technique. Phys. Procedia 2012, 32, 401–407. [Google Scholar] [CrossRef] [Green Version]
- De Santis, R.; Mollica, F.; Ambrosio, L.; Ronca, D. Dynamic mechanical behaviour of PMMA based bone cements in the environment. J. Mater. Sci. Mater. Medic. 2003, 14, 583–594. [Google Scholar] [CrossRef]
- Kolczyk, E.; Balin, A.; Kusz, D.; Sobczyk, K. Assessment of the tendency to aging of polymer bone cement. Eng. Biomater. 2010, 96–98, 4–9. [Google Scholar]
- Balin, A. Cements in Bone Surgery; Silesian University of Technology: Gliwice, Poland, 2016. [Google Scholar]
- Mousa, W.F.; Kobayashi, M.; Shinzato, S.; Kamimura, M.; Neo, M.; Yoshihara, S.; Nakamura, T. Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials 2000, 21, 2137–2146. [Google Scholar] [CrossRef]
- Toborek, J.; Gajda, Z.; Balin, A. Influence of the organism’s environment on the bacteriostatic and mechanical properties of Palacos R cement with an antibiotic admixture. Orthop. Surg. 2002, 67, 605–611. [Google Scholar]
- Colombi, P. Fatigue analysis of cemented hip prosthesis: Damage accumulation scenario and sensitivity analysis. Int. J. Fatigue 2002, 24, 739–746. [Google Scholar] [CrossRef]
- Graham, J.; Pruitt, L.; Ries, M.; Gundian, N. Fracture and fatigue properties of acrylic bone cement. J. Arthroplast. 2000, 15, 1028–1035. [Google Scholar] [CrossRef]
- Grasa, J.; Perez, M.; Bea, J.; Garcia-Aznar, J.; Doblare, M. A probabilistic damage model for acrylic cements. Application to the life prediction of cemented hip implants. Int. J. Fatigue 2005, 27, 891–904. [Google Scholar] [CrossRef]
- Ishihara, S.; McEvily, A.; Goshima, T.; Konekasus, K.; Nara, T. On fatigue life time and fatigue crack growth behaviour of bone cement. J. Mater. Sci. Mater. Med. 2000, 11, 661–666. [Google Scholar] [CrossRef]
- Lewis, G.; Mladsi, S. Correlation between impact strength and fracture toughness of PMMA- based bone cements. Biomaterials 2000, 21, 775–781. [Google Scholar] [CrossRef]
- Kolczyk, E. Durability of Polymer Cement for Use in Orthopedics. Ph.D. Thesis, Silesian University, Katowice, Poland, 2010. [Google Scholar]
- Heller Heller, M.; Bergmann, G.; Kassi, J.; Hass, N.; Duda, G. Determination of muscle loading at the hip joint for use in pre-clinical testing. J. Biomech. 2005, 38, 1155–1163. [Google Scholar] [CrossRef]
- AshaRani, P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef]
- Łukaszczyk, J. Polymer and composite bone cements and related materials. Polymers (Polimery) 2004, 44, 79–88. [Google Scholar]
- Chen, L.; Tang, Y.; Zhao, K.; Zha, X.; Liu, J.; Bai, H.; Wu, Z. Fabrication of the antibiotic-releasing gelatin/PMMA bone cement. Coll. Surf. B Biointerfaces 2019, 183, 110448. [Google Scholar] [CrossRef]
- Souza, T.A.J.; Franchi, L.P.; Rosa, L.R.; da Veiga, M.A.M.S.; Takahashi, C.S. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat. Res. Toxicol. Environ. Mutagen. 2016, 795, 70–83. [Google Scholar] [CrossRef]
- Bartmański, M.; Pawłowski, Ł.; Mielewczyk-Gryń, A.; Strugała, G.; Rokosz, K.; Gaiaschi, S.; Chapon, P.; Raaen, S.; Zieliński, A. The influence of nanometals, dispersed in the electrophoretic nanohydroxyapatite coatings on the Ti13Zr13Nb alloy, on their morphology and mechanical properties. Materials 2021, 14, 1638. [Google Scholar] [CrossRef]
Liquid Components (25 wt.% of Cement) | Powder Components (75 wt.% of Cement) |
---|---|
Methyl methacrylate: 99.10 wt.% | Polymethyl methacrylate: 84.30 wt.% |
N-N-dimetylo-p-toluidyne: 0.90 wt.% | Barium sulfate: 13.00 wt.% |
Hydroquinone: 75 ppm wt.% | Benzoyl peroxide: 2.70 wt.% |
Ingredient | Content (g/dm3) |
---|---|
Casein peptone | 17 |
Peptone S | 3 |
NaCl | 5 |
Na2HPO4 | 2.5 |
Glucose | 2.5 |
Form | Volume Fraction (%) |
---|---|
Staphylococcus aureus | 20 |
Staphylococcus epidermidis | 20 |
Enterococcus faecalis | 15 |
Enterobacter cloacae | 10 |
Pseudomonas aeruginosa | 35 |
Sample | Pure Bone Cement | Ag | Cu 10 | Cu 70 | Ni | AgCu |
---|---|---|---|---|---|---|
Mean value | 106.29 ± 5.49 | 127.41 ± 5.74 | 139.77 ± 0.06 | 138.65 ± 0.13 | 125.71 ± 0.49 | 107.37 ± 5.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świeczko-Żurek, B.; Zieliński, A.; Bociąga, D.; Rosińska, K.; Gajowiec, G. Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties. Nanomaterials 2022, 12, 732. https://doi.org/10.3390/nano12050732
Świeczko-Żurek B, Zieliński A, Bociąga D, Rosińska K, Gajowiec G. Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties. Nanomaterials. 2022; 12(5):732. https://doi.org/10.3390/nano12050732
Chicago/Turabian StyleŚwieczko-Żurek, Beata, Andrzej Zieliński, Dorota Bociąga, Karolina Rosińska, and Grzegorz Gajowiec. 2022. "Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties" Nanomaterials 12, no. 5: 732. https://doi.org/10.3390/nano12050732
APA StyleŚwieczko-Żurek, B., Zieliński, A., Bociąga, D., Rosińska, K., & Gajowiec, G. (2022). Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties. Nanomaterials, 12(5), 732. https://doi.org/10.3390/nano12050732