Tempranillo Grape Extract in Transfersomes: A Nanoproduct with Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Grape Pomace Extract Preparation
2.3. Identification of Phenolic Compounds by Using UHPLC-DAD-ESI-QToF/MS
2.4. Analysis of Anthocyanins by Using HPLC-DAD-ESI-QqQ/MS
2.5. Vesicle Preparation and Characterization
2.6. Antioxidant Assays
2.7. Cell Culture and Intracellular ROS Levels
2.8. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compounds in Grape Pomace Extract
3.2. Vesicle Design and Characterization
3.3. Antioxidant Activity of Grape Pomace Extract
3.4. Cell Viability and Intracellular ROS Inhibition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taofiq, O.; González-Paramás, A.M.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics-A review. Ind. Crops Prod. 2016, 90, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.M.; Gaudino, G. Cellular and molecular facets of keratinocyte reepithelialization during wound healing. Exp. Cell Res. 2005, 304, 274–286. [Google Scholar] [CrossRef]
- Kelkel, M.; Jacob, C.; Dicato, M.; Diederich, M. Potential of the Dietary Antioxidants Resveratrol and Curcumin in Prevention and Treatment of Hematologic Malignancies. Molecules 2010, 15, 7035–7074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef] [PubMed]
- de Lange, D.W. From red wine to polyphenols and back: A journey through the history of the French Paradox. Thromb. Res. 2007, 119, 403–406. [Google Scholar] [CrossRef]
- Rasines-Perea, Z.; Teissedre, P.-L. Grape polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules 2017, 22, 68. [Google Scholar] [CrossRef]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [Green Version]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Portu, J.; López-Alfaro, I.; Gómez-Alonso, S.; López, R.; Garde-Cerdán, T. Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chem. 2015, 180, 171–180. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Nunes, C.; Castro, A.; Ferreira, P.; Coimbra, M.A. Influence of grape pomace extract incorporation on chitosan films properties. Carbohyd. Polym. 2014, 113, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med.-UK 2018, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Gillet, A.; Evrard, B.; Piel, G. Liposomes and parameters affecting their skin penetration behaviour. J. Drug Deliv. Sci. Technol. 2011, 21, 35–42. [Google Scholar] [CrossRef]
- Cross, S.E.; Roberts, M.S. Physical Enhancement of Transdermal Drug Application: Is Delivery Technology Keeping up with Pharmaceutical Development? Curr. Drug Deliv. 2004, 1, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Kakran, M.; Sahoo, N.G.; Li, L. Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids Surf. B 2011, 88, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liu, G.-Y.; Wang, X.-Q.; Liu, F.; Xu, Y.-F.; Ma, J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int. J. Pharm. 2011, 404, 231–237. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Ma, Y.; Yu, A.; Cai, F.; Shao, W.; Zhai, G. Formulation optimization and in situ absorption in rat intestinal tract of quercetin-loaded microemulsion. Colloids Surf. B 2009, 71, 306–314. [Google Scholar] [CrossRef]
- Li, H.L.; Zhao, X.B.; Ma, Y.K.; Zhai, G.X.; Li, L.B.; Lou, H.X. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release 2009, 133, 238–244. [Google Scholar] [CrossRef]
- Caddeo, C.; Díez-Sales, O.; Pons, R.; Carbone, C.; Ennas, G.; Puglisi, G.; Fadda, A.M.; Manconi, M. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. J. Colloid Interf. Sci. 2016, 461, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Cevc, G. Material transport across permeability barriers by means of lipid vesicles. In Handbook of Biological Physics; Lipowsky, R., Sackmann, E., Eds.; Elsevier B.V: Amsterdam, The Netherlands, 1995; Volume 1, pp. 465–490. [Google Scholar] [CrossRef]
- Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nanovesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exp. 2017, 8, 1325708. [Google Scholar] [CrossRef] [PubMed]
- Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020, 12, 855. [Google Scholar] [CrossRef] [PubMed]
- Garrido, T.; Gizdavic-Nikolaidis, M.; Leceta, I.; Urdanpilleta, M.; Guerrero, P.; de la Caba, K.; Kilmartin, P.A. Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. Waste Manag. 2019, 88, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Pintus, F.; Spanò, D.; Mascia, C.; Macone, A.; Floris, G.; Medda, R. Acetylcholinesterase Inhibitory and Antioxidant Properties of Euphorbia characias Latex. Rec. Nat. Prod. 2013, 7, 147–151. [Google Scholar]
- Caddeo, C.; Lucchesi, D.; Fernàndez Busquets, X.; Valenti, D.; Penno, G.; Fadda, A.M.; Pucci, L. Efficacy of a resveratrol nanoformulation based on a commercially available liposomal platform. Int. J. Pharm. 2021, 608, 121086. [Google Scholar] [CrossRef]
- Era, B.; Floris, S.; Sogos, V.; Porcedda, C.; Piras, A.; Medda, R.; Fais, A.; Pintus, F. Anti-Aging Potential of Extracts from Wash-ingtonia filifera Seeds. Plants 2021, 10, 151. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; Gonçalves, A.E.D.S.S.; Genovese, M.I.; Roseane, F. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Yan, Q.; Zhang, L.; Zhang, X.; Liu, X.; Yuan, F.; Hou, Z.; Gao, Y. Stabilization of grape skin anthocyanins by copigmentation with enzymatically modified isoquercitrin (EMIQ) as a copigments. Food Res. Int. 2013, 50, 603–609. [Google Scholar] [CrossRef]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant Activity and Polyphenols Characterization of Four Monovarietal Grape Pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef]
- Campos, F.; Peixoto, A.F.; Fernandes, P.A.R.; Coimbra, M.A.; Mateus, N.; de Freitas, V.; Fernandes, I.; Fernandes, A. The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients 2021, 13, 4495. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Hass, B.; Kuss, M.A.; Zhang, H.; Ryu, S.; Zhang, D.; Li, T.; Li, Y.; Duan, B. Fabrication of versatile dynamic hyaluronic acid-based hydrogels. Carbohyd. Polym. 2020, 233, 115803. [Google Scholar] [CrossRef] [PubMed]
# | Compound | tR (min) | DAD UV-Visible Bands (nm) | m/z [M + H]+ | m/z [M − H]− |
---|---|---|---|---|---|
Flavan-3-ols | |||||
1 | ((Epi)catechin)3 (1) 1 | 3.29 | 283 | 867.199 | 865.199 |
2 | Procyanidin B I | 5.54 | 280 | 579.151 | 577.135 |
3 | ((Epi)catechin)3 (2) 1 | 5.73 | 283 | 867.213 | 865.199 |
4 | Procyanidin B II | 6.44 | 280 | 579.150 | 577.136 |
5 | Catechin 2 | 7.53 | 278 | 291.087 | 289.072 |
6 | ((Epi)catechin)3 (3) 1,2 | 7.60 | 283 | 867.212 | 865.199 |
7 | Procyanidin B III | 8.19 | 280 | 579.150 | 577.135 |
8 | ((Epi)catechin)3 (4) 1 | 8.65 | 283 | 867.214 | 865.199 |
9 | Procyanidin B IV | 12.10 | 280 | 579.151 | 577.135 |
10 | ((Epi)catechin)3 (5) 1 | 12.91 | 283 | 867.214 | 865.199 |
11 | Epicatechin | 16.31 | 278 | 291.087 | 289.072 |
12 | ((Epi)catechin)3 (6) 1 | 17.39 | 283 | 867.216 | 865.199 |
13 | Procyanidin B gallate | 19.44 | 280 | 731.160 | 729.140 |
14 | ((Epi)catechin)3 (7) 1 | 20.53 | 283 | 867.216 | 865.199 |
Flavonols | |||||
15 | Quercetin-hexosyl-hexoside-1 | 23.80 | 264, 344 | 627.157 | 625.137 |
16 | Quercetin-hexosyl-hexoside-2 | 25.20 | 264, 344 | 627.156 | 625.140 |
17 | Quercetin-3-O-galactoside | 27.64 | 255,353 | n.d. 3 | 463.082 |
18 | Quercetin-3-O-glucuronide | 27.89 | 255, 352 | 479.082 | 477.067 |
19 | Quercetin-3-O-glucoside | 28.38 | 255, 352 | n.d. 3 | 463.092 |
20 | Kaempferol-3-O-galactoside | 30.21 | 265, 345 | 449.108 | 447.093 |
21 | Kaempferol-3-O-glucuronide | 31.00 | 265, 345 | 463.088 | 461.070 |
22 | Kaempferol-3-O-glucoside | 31.51 | 265, 348 | 449.108 | 447.093 |
23 | Isorhamnetin-3-O-galactoside | 31.51 | 254, 352 | 479.119 | 477.103 |
24 | Isorhamnetin-3-O-glucoside | 32.41 | 254, 352 | 479.119 | 477.104 |
Hydroxycinnamic acids | |||||
25 | p-coumaroyl hexoside | 10.46 | 313 | n.d. 3 | 325.092 |
# | Compound | DAD UV-Visible Bands (nm) | tR (min) | m/z [M]+ | m/z [Y0]+ | Conc. (µg Mv-3-O-glc Equivalents/g Dry Pomace) |
---|---|---|---|---|---|---|
1 | Delphinidin-3-O-glucoside | 276, 526 | 8.97 | 465 | 303 | 235.02 |
2 | Cyanidin-3-O-glucoside | 279, 519 | 12.63 | 449 | 287 | 49.39 |
3 | Petunidin-3-O-glucoside | 276, 526 | 14.48 | 479 | 317 | 201.99 |
4 | Peonidin-3-O-glucoside | 278, 519 | 19.45 | 463 | 301 | 118.26 |
5 | Malvidin-3-O-glucoside | 276, 526 | 21.57 | 493 | 331 | 585.04 |
6 | Delphinidin-3-O-(6-O-acetyl)-glucoside | 275, 529 | 28.23 | 507 | 303 | 5.25 |
7 | Petunidin-3-O-(6-O-acetyl)-glucoside | 273, 526 | 36.10 | 521 | 317 | 6.19 |
8 | Peonidin-3-O-(6-O-acetyl)-glucoside | 278, 526 | 39.43 | 505 | 301 | <4.98 1 |
9 | Malvidin-3-O-(6-O-acetyl)-glucoside | 279, 526 | 40.03 | 535 | 331 | 47.04 |
10 | Malvidin-3-O-(6-O-caffeoyl)-glucoside | 279, 543 | 41.88 | 655 | 331 | 10.81 |
11 | Petunidin-3-O-(6-p-coumaroyl)-glucoside | 279, 531 | 43.00 | 625 | 317 | 22.10 |
12 | Peonidin-3-O-(6-p-coumaroyl)-glucoside 2 | 279, 531 | 45.88 | 609 | 301 | 134.44 |
13 | Malvidin-3-O-(6-p-coumaroyl)-glucoside 2 | 281, 532 | - | 639 | 331 | - |
Formulation | MD (nm) | P.I. | ZP (mV) |
---|---|---|---|
TE transfersomes | ** 105 ± 8 | ** 0.29 ± 0.03 | **•• −9 ± 2 |
TE liposomes | §§ 155 ± 16 | §§ 0.59 ± 0.04 | §§ −4 ± 1 |
Empty transfersomes | ## 106 ± 17 | # 0.29 ± 0.02 | ## −16 ± 2 |
Empty liposomes | 128 ± 2 | 0.33 ± 0.03 | −9 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asensio-Regalado, C.; Alonso-Salces, R.M.; Gallo, B.; Berrueta, L.A.; Era, B.; Pintus, F.; Caddeo, C. Tempranillo Grape Extract in Transfersomes: A Nanoproduct with Antioxidant Activity. Nanomaterials 2022, 12, 746. https://doi.org/10.3390/nano12050746
Asensio-Regalado C, Alonso-Salces RM, Gallo B, Berrueta LA, Era B, Pintus F, Caddeo C. Tempranillo Grape Extract in Transfersomes: A Nanoproduct with Antioxidant Activity. Nanomaterials. 2022; 12(5):746. https://doi.org/10.3390/nano12050746
Chicago/Turabian StyleAsensio-Regalado, Carlos, Rosa María Alonso-Salces, Blanca Gallo, Luis A. Berrueta, Benedetta Era, Francesca Pintus, and Carla Caddeo. 2022. "Tempranillo Grape Extract in Transfersomes: A Nanoproduct with Antioxidant Activity" Nanomaterials 12, no. 5: 746. https://doi.org/10.3390/nano12050746
APA StyleAsensio-Regalado, C., Alonso-Salces, R. M., Gallo, B., Berrueta, L. A., Era, B., Pintus, F., & Caddeo, C. (2022). Tempranillo Grape Extract in Transfersomes: A Nanoproduct with Antioxidant Activity. Nanomaterials, 12(5), 746. https://doi.org/10.3390/nano12050746