Magnetic Properties in Mn-Doped δ-MoN: A Systematic Density Functional Theory Study
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Antonio, D.; Yu, X.; Zhang, J.; Cornelius, A.L.; He, D.; Zhao, Y. The hardest superconducting metal nitride. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cheng, K.; Yan, H.; Wei, Q.; Zheng, B. Electronic bonding analyses and mechanical strengths of incompressible tetragonal transition metal dinitrides TMN2 (TM = Ti, Zr, and Hf). Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Andrievski, R.A. High-melting-point compounds: New approaches and new results. Phys. Uspekhi 2017, 60, 276–289. [Google Scholar] [CrossRef]
- Jauberteau, I.; Bessaudou, A.; Mayet, R.; Cornette, J.; Jauberteau, J.L.; Carles, P.; Merle-Méjean, T. Molybdenum nitride films: Crystal structures, synthesis, mechanical, electrical and some other properties. Coatings 2015, 5, 656–687. [Google Scholar] [CrossRef] [Green Version]
- Simmendinger, J.; Pracht, U.S.; Daschke, L.; Proslier, T.; Klug, J.A.; Dressel, M.; Scheffler, M. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride. Phys. Rev. B 2016, 94, 064506. [Google Scholar] [CrossRef] [Green Version]
- Saha, B.; Garbrecht, M.; Perez-Taborda, J.A.; Fawy, M.H.; Koh, Y.R.; Shakouri, A.; Martin-Conzalez, M.; Hultman, L.; Sands, T.D. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN. Appl. Phys. Lett. 2017, 110, 252104. [Google Scholar] [CrossRef]
- Tang, H.; Luo, J.; Tian, X.L.; Dong, Y.; Li, J.; Liu, M.; Liu, L.; Song, H.; Liao, S. Template-free preparation of 3D porous Co-doped VN nanosheet-assembled microflowers with enhanced oxygen reduction activity. ACS Appl. Mater. Interfaces 2018, 10, 11604–11612. [Google Scholar] [CrossRef]
- Luo, J.; Tian, X.; Zeng, J.; Li, Y.; Song, H.; Liao, S. Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction. ACS Catal. 2016, 6, 6165–6174. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, M.; Zhao, Y. Carbon doping to improve the high temperature tribological properties of VN coating. Tribol. Int. 2016, 97, 327–336. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Y.; Chen, H.; Li, J.; Yao, Y.; Wang, C. Doping carbon to improve the tribological performance of CrN coatings in seawater. Tribol. Int. 2015, 90, 362–371. [Google Scholar] [CrossRef]
- Ningthoujam, R.S.; Gajbhiye, N.S. Synthesis, electron transport properties of transition metal nitrides and applications. Prog. Mater. Sci. 2015, 70, 50–154. [Google Scholar] [CrossRef]
- Sukkabot, W. Structural and magnetic properties of transition-metal doped scandium nitride (ScN): Spin density functional theory. Phys. B 2019, 570, 236–240. [Google Scholar] [CrossRef]
- Benissad, F.; Houari, A. Electronic and magnetic properties of transition-metal-doped ScN for spintronics applications. Phys. Status Solidi B 2021, 258, 2000241. [Google Scholar] [CrossRef]
- Lone, I.U.N.; Mohamed, S.S.M.; Banu, I.S.; Basha, S.S. Structural, elastic and magnetic properties of Mn and Sb doped chromium nitride—An ab initio study. Mater. Chem. Phys. 2017, 192, 291–298. [Google Scholar] [CrossRef]
- Quintela, C.X.; Rivadulla, F.; Rivas, J. Electronic and magnetic phase diagram of Cr1−xVxN. Phys. Rev. B 2010, 82, 245201. [Google Scholar] [CrossRef]
- Sirajuddeen, M.M.S.; Banu, I.S. An ab initio study on electronic and magnetic properties of Cr, V doped Cd and Zn nitrides for spintronic applications. J. Magn. Magn. Mater. 2016, 406, 48–59. [Google Scholar] [CrossRef]
- Sirajuddeen, M.M.S.; Banu, I.S. Electronic and magnetic properties of Fe (Mn)-doped Cd and Zn nitrides for spintronic applications: A first-principles study. J. Mater. Sci. 2015, 50, 1446–1456. [Google Scholar] [CrossRef]
- Herwadkar, A.; Lambrecht, W.R. Mn-doped ScN: A dilute ferromagnetic semiconductor with local exchange coupling. Phys. Rev. B 2005, 72, 235207. [Google Scholar] [CrossRef]
- Herwadkar, A.; Lambrecht, W.R.; van Schilfgaarde, M. Linear response theoretical study of the exchange interactions in Mn-doped ScN: Effects of disorder, band gap, and doping. Phys. Rev. B 2008, 77, 134433. [Google Scholar] [CrossRef]
- Soignard, E.; McMillan, P.F.; Chaplin, T.D.; Farag, S.M.; Bull, C.L.; Somayazulu, M.S.; Leinenweber, K. High-pressure synthesis and study of low-compressibility molybdenum nitride (MoN and MoN1−x) phases. Phys. Rev. B 2003, 68, 132101. [Google Scholar] [CrossRef]
- Lévy, F.; Hones, P.; Schmid, P.E.; Sanjinés, R.; Diserens, M.; Wiemer, C. Electronic states and mechanical properties in transition metal nitrides. Surf. Coat. Technol. 1999, 120, 284–290. [Google Scholar] [CrossRef]
- Tagliazucca, V.; Leoni, M.; Weidenthaler, C. Crystal structure and microstructural changes of molybdenum nitrides traced during catalytic reaction by in situ X-ray diffraction studies. Phys. Chem. Chem. Phys. 2014, 16, 6182–6188. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H.J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286. [Google Scholar] [CrossRef] [PubMed]
- Papaconstantopoulos, D.A.; Pickett, W.E.; Klein, B.M.; Boyer, L.L. Electronic properties of transition-metal nitrides: The group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN. Phys. Rev. B 1985, 31, 752. [Google Scholar] [CrossRef] [PubMed]
- Gajbhiye, N.S.; Ningthoujam, R.S. Structural, electrical and magnetic studies of nanocrystalline δ-MoN and γ-Mo2N. Phys. Status Solidi C 2004, 1, 3449–3454. [Google Scholar] [CrossRef]
- Ihara, H.; Hirabayashi, M.; Senzaki, K.; Kimura, Y.; Kezuka, H. Superconductivity of B1-MoN films annealed under high pressure. Phys. Rev. B 1985, 32, 1816. [Google Scholar] [CrossRef]
- Inumaru, K.; Nishikawa, T.; Nakamura, K.; Yamanaka, S. High-pressure synthesis of superconducting molybdenum nitride δ-MoN by in situ nitridation. Chem. Mater. 2008, 20, 4756–4761. [Google Scholar] [CrossRef]
- Maoujoud, M.; Binst, L.; Delcambe, P.; Offergeld-Jardinier, M.; Bouillon, F. Deposition parameter effects on the composition and the crystalline state of reactively sputtered molybdenum nitride. Surf. Coat. Technol. 1992, 52, 179–185. [Google Scholar] [CrossRef]
- Inumaru, K.; Baba, K.; Yamanaka, S. Superconducting molybdenum nitride epitaxial thin films deposited on MgO and α-Al2O3 substrates by molecular beam epitaxy. Appl. Surf. Sci. 2006, 253, 2863–2869. [Google Scholar] [CrossRef]
- Inumaru, K.; Baba, K.; Yamanaka, S. Synthesis and characterization of superconducting β-Mo2N crystalline phase on a Si substrate: An application of pulsed laser deposition to nitride chemistry. Chem. Mater. 2005, 17, 5935–5940. [Google Scholar] [CrossRef]
- Bezinge, A.; Yvon, K.; Muller, J.; Lengaeur, W.; Ettmayer, P. High-pressure high-temperature experiments on δ-MoN. Solid State Commun. 1987, 63, 141–145. [Google Scholar] [CrossRef]
- Bull, C.L.; McMillan, P.F.; Soignard, E.; Leinenweber, K. Determination of the crystal structure of δ-MoN by neutron diffraction. J. Solid State Chem. 2004, 177, 1488–1492. [Google Scholar] [CrossRef]
- Zhang, Y.; Haberkorn, N.; Ronning, F.; Wang, H.; Mara, N.A.; Zhuo, M.; Chen, L.; Lee, J.H.; Blackmore, K.J.; Bauer, E.; et al. Epitaxial superconducting δ-MoN films grown by a chemical solution method. J. Am. Chem. Soc. 2011, 133, 20735–20737. [Google Scholar] [CrossRef] [PubMed]
- Sahu, B.R.; Kleinman, L. Theoretical study of structural and electronic properties of δ-MoN. Phys. Rev. B 2004, 70, 073103. [Google Scholar] [CrossRef]
- Zhao, E.; Wang, J.; Wu, Z. Displacive phase transition, structural stability, and mechanical properties of the ultra-incompressible and hard MoN by first principles. Phys. Status Solidi B 2010, 247, 1207–1213. [Google Scholar] [CrossRef]
- Yu, J.; Wang, K.; Qiao, X.; Tian, J.; Zhang, G.; Guo, Q. Effects of Cr doping in δ-MoN: Structural, magnetic and spin transport properties. Theor. Chem. Acc. 2020, 139, 1–9. [Google Scholar] [CrossRef]
- Madsen, G.K.; Blaha, P.; Schwarz, K.; Sjöstedt, E.; Nordström, L. Efficient linearization of the augmented plane-wave method. Phys. Rev. B 2001, 64, 195134. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 1998, 57, 1505. [Google Scholar] [CrossRef]
- Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+ U framework. Phys. Rev. B 2006, 73, 195107. [Google Scholar] [CrossRef] [Green Version]
- Krcha, M.D.; Janik, M.J. Examination of oxygen vacancy formation in Mn-doped CeO2 using DFT+ U and the hybrid functional HSE06. Langmuir 2013, 29, 10120–10131. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Puggioni, D.; Rondinelli, J.M. Assessing exchange-correlation functional performance in the chalcogenide lacunar spinels GaM4Q8 (M = Mo, V, Nb, Ta; Q = S, Se). Phys. Rev. B 2019, 100, 115149. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E.; Jepsen, O.; Andersen, O.K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223. [Google Scholar] [CrossRef] [PubMed]
- Cendlewska, B.; Morawski, A.; Misiuk, A. Superconducting MoNx prepared by isostatic direct nitriding at high pressure and high temperature. J. Phys. F Met. Phys. 1987, 17, L71. [Google Scholar] [CrossRef]
- Cantele, G.; Degoli, E.; Luppi, E.; Magri, R.; Ninno, D.; Iadonisi, G.; Ossicini, S. First-principles study of n-and p-doped silicon nanoclusters. Phys. Rev. B 2005, 72, 113303. [Google Scholar] [CrossRef]
- Yang, K.; Dai, Y.; Huang, B.; Whangbo, M.H. Density functional studies of the magnetic properties in nitrogen doped TiO2. Chem. Phys. Lett. 2009, 481, 99–102. [Google Scholar] [CrossRef]
- Oyama, S.T. Introduction to the chemistry of transition metal carbides and nitrides. In The Chemistry of Transition Metal Carbides and Nitrides; Oyama, S.T., Ed.; Springer: Dordrecht, The Netherlands, 1996; pp. 1–27. [Google Scholar]
- Zhang, Y.; Miller, G.J.; Fokwa, B.P. Computational design of rare-earth-free magnets with the Ti3Co5B2-type structure. Chem. Mater. 2017, 29, 2535–2541. [Google Scholar] [CrossRef]
- Ruiz-Díaz, P.; Stepanyuk, O.V.; Stepanyuk, V.S. Effects of interatomic coupling on magnetic anisotropy and order of spins on metallic surfaces. J. Phys. Chem. C 2015, 119, 26237–26241. [Google Scholar] [CrossRef] [Green Version]
- Seña, N.; Dussan, A.; Mesa, F.; Castaño, E.; González-Hernández, R. Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study. J. Appl. Phys. 2016, 120, 051704. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, M.; Guo, Z.; Yan, X. First-principles calculations for magnetic properties of Mn-doped GaN nanotubes. Phys. Lett. A 2008, 372, 2688–2691. [Google Scholar] [CrossRef]
- Pearton, S.J.; Norton, D.P.; Ivill, M.P.; Hebard, A.F.; Zavada, J.M.; Chen, W.M.; Buyanova, I.A. Ferromagnetism in transition-metal doped ZnO. J. Electron. Mater. 2007, 36, 462–471. [Google Scholar] [CrossRef]
- Hurd, C.M. Varieties of magnetic order in solids. Contemp. Phys. 1982, 23, 469–493. [Google Scholar] [CrossRef]
Configurations | a (Å) | c (Å) | c/a | Volume (Å3) | Ef (eV) |
---|---|---|---|---|---|
δ-MoN | 5.757 | 5.668 | 0.985 | 162.7 | |
Mn-MoN(2a) | 5.726 | 5.626 | 0.983 | 159.5 | −1.71 |
Mn-MoN(6c) | 5.714 | 5.644 | 0.988 | 159.6 | −1.68 |
Configurations | d (Å) | ΔE (meV) | ΔEground (meV) | Mtotal (μB) | M1/M2 (μB) | Coupling | Ef (eV) |
---|---|---|---|---|---|---|---|
(0, 1) | 2.73 | 44 | 283 | 4.49 | 3.88/4.01 | FM | −3.20 |
(0, 2) | 3.18 | −46 | 422 | −0.34 | 4.03/−4.05 | AFM | −3.06 |
(0, 3) | 3.88 | −52 | 265 | −0.41 | 4.01/−4.05 | AFM | −3.22 |
(0, 4) | 5.01 | −39 | 236 | 0.07 | 4.08/−4.06 | AFM | −3.25 |
(0, 5) | 5.65 | 11 | 210 | 3.93 | 3.98/3.98 | FM | −3.27 |
(0, 6) | 5.77 | 382 | 68 | 3.67 | 3.99/3.99 | FM | −3.41 |
(0, 7) | 6.07 | −19 | 381 | 0.05 | 4.05/−4.06 | AFM | −3.10 |
(0, 8) | 6.44 | 77 | 0 | 3.38 | 4.00/4.00 | FM | −3.48 |
(0, 9) | 6.47 | −15 | 376 | −0.35 | 4.03/−4.06 | AFM | −3.11 |
(0, 10) | 7.25 | −36 | 220 | −0.96 | 4.00/−4.03 | AFM | −3.26 |
(0, 11) | 8.08 | 54 | 146 | 3.50 | 3.99/3.99 | FM | −3.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Yu, J.; Chi, C.; Zhang, G. Magnetic Properties in Mn-Doped δ-MoN: A Systematic Density Functional Theory Study. Nanomaterials 2022, 12, 747. https://doi.org/10.3390/nano12050747
Wang K, Yu J, Chi C, Zhang G. Magnetic Properties in Mn-Doped δ-MoN: A Systematic Density Functional Theory Study. Nanomaterials. 2022; 12(5):747. https://doi.org/10.3390/nano12050747
Chicago/Turabian StyleWang, Keda, Jing Yu, Caixia Chi, and Guiling Zhang. 2022. "Magnetic Properties in Mn-Doped δ-MoN: A Systematic Density Functional Theory Study" Nanomaterials 12, no. 5: 747. https://doi.org/10.3390/nano12050747
APA StyleWang, K., Yu, J., Chi, C., & Zhang, G. (2022). Magnetic Properties in Mn-Doped δ-MoN: A Systematic Density Functional Theory Study. Nanomaterials, 12(5), 747. https://doi.org/10.3390/nano12050747