Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Fabrication of the GQDs
2.3. Fabrication of the MoS2 Nanoflowers
2.4. Fabrication of the MoS2/rGO Nanocomposites
2.5. Fabrication of the MoS2/rGO/GQDs Hybrids
2.6. Characterization
2.7. Fabrication and Measurement of the Synthesized Sensors
3. Results and Discussion
3.1. Nanocomposite Material Characterization
3.2. Gas-Sensing Properties
3.3. Gas-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duy, L.T.; Kim, D.J.; Trung, T.Q.; Dang, V.Q.; Kim, B.Y.; Moon, H.K.; Lee, N.E. High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars. Adv. Funct. Mater. 2014, 25, 883–890. [Google Scholar] [CrossRef]
- Liu, B.L.; Chen, L.; Liu, G.; Abbas, A.N.; Fathi, M.; Zhou, C.W. High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304–5314. [Google Scholar] [CrossRef] [PubMed]
- Casals, O.; Markiewicz, N.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H.S.; Waag, A.; Prades, J.D. A parts per billion (ppb) sensor for NO2 with microwatt (μW) power requirements based on micro light plates. ACS Sens. 2019, 4, 822–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xian, F.; Zong, B.; Mao, S. Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 2018, 10, 64. [Google Scholar]
- Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metal—Organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Men, G.L.; Zhang, R.X.; Gu, F.B.; Han, D.M. Pd loading induced excellent NO2 gas sensing of 3DOM In2O3 at room temperature. Sens. Actuators B Chem. 2018, 263, 218–228. [Google Scholar] [CrossRef]
- Liu, C.H.; Tai, H.L.; Zhang, P.; Ye, Z.B.; Su, Y.J.; Jiang, Y.D. Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary self assembly nanocomposite thin film at room temperature. Sens. Actuators B Chem. 2017, 246, 85–95. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, W.; Hong, Y.; Lee, G.; Yoon, D.S. Recent advances in carbon material-based NO2 gas sensors. Sens. Actuators B Chem. 2018, 255, 1788–1804. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Sun, Y.E.; Jiang, C.X.; Yao, Y.; Wang, D.Y.; Zhang, Y. Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfifide ternary nanocomposite and its sensing properties. Sens. Actuators B Chem. 2017, 253, 1120–1128. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.J.; Wang, X.X.; Zeng, D.W.; Xie, C.S. Enhancing room-temperature NO2 sensing properties via forming heterojunction for NiO-rGO composited with SnO2 nanoplates. Sens. Actuators B Chem. 2017, 243, 1010–1019. [Google Scholar] [CrossRef]
- Yin, F.F.; Li, Y.; Yue, W.J.; Gao, S.; Zhang, C.W.; Chen, X.Z. Sn3O4/rGO heterostructure as a material for formaldehyde gas sensor with a wide detecting range and low operating temperature. Sens. Actuators B Chem. 2020, 312, 127954. [Google Scholar] [CrossRef]
- Han, J.T.; Kim, B.J.; Kim, B.G.; Kim, J.S.; Jeong, B.H.; Jeong, S.Y.; Jeong, H.J.; Cho, J.H.; Lee, G.W. Enhanced electrical properties of reduced graphene oxide multilayer films by in-situ insertion of a TiO2 layer. ACS Nano 2011, 5, 8884–8891. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, J.; Pan, D.; Wang, Y.; Noetzel, R.; Li, H.; Xie, P.; Pei, W.L.; Umar, A.; Jiang, L.; et al. Mimicking a dog’s nose: Scrolling graphene nanosheets. ACS Nano 2018, 12, 2521–2530. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Xu, Y.T.; Huang, S.Y.; Zhang, K.; Yuen, M.M.F.; Xu, J.B.; Fu, X.Z.; Sun, R.; Wong, C.P. 3D RGO frameworks wrapped hollow spherical SnO2-Fe2O3 mesoporous nano-shells: Fabrication, characterization and lithium storage properties. Electrochim. Acta 2016, 202, 186–196. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Gao, S.; Fei, T.; Liu, S.; Zhang, T. Construction of ZnO/SnO2 heterostructure on reduced graphene oxide for enhanced nitrogen dioxide sensitive performances at room temperature. ACS Sens. 2019, 4, 2048–2057. [Google Scholar] [CrossRef]
- Mao, S.; Cui, S.M.; Lu, G.H.; Yu, K.H.; Wen, Z.H.; Chen, J.H. Tuning gas sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 2012, 22, 11009–11013. [Google Scholar] [CrossRef]
- Das, T.; Chakraborty, S.; Ahuja, R.; Kawazoe, Y.; Das, G.P. Charge transfer driven interaction of CH4, CO2 and NH3 with TiS2 monolayer: Influence of vacancy defect. Catal. Today 2020, 370, 189–195. [Google Scholar] [CrossRef]
- Cao, J.; Wang, W.; Zhou, J.; Chen, J.; Deng, H.; Zhang, Y.; Liu, X. Controllable gas sensitive performance of 1T’ WS2 monolayer instructed by strain: First-principles simulations. Chem. Phys. Lett. 2020, 758, 137921. [Google Scholar] [CrossRef]
- Hu, X.Y.; Gui, Y.G.; Liu, Y.J.; Ran, L.; Chen, X.P. Adsorption characteristics of H2S, SO2, SO2F2, SOF2, and N2 on NiO–MoSe2 monolayer for gas-sensing applications. Vacuum 2021, 193, 110506. [Google Scholar] [CrossRef]
- Zhao, P.C.; Ni, M.J.; Xu, Y.T.; Wang, C.X.; Chen, C.; Zhang, X.R.; Li, C.Y.; Xie, Y.X.; Fei, J.J. A novel ultrasensitive electrochemical quercetin sensor based on MoS2 carbon nanotube@graphene oxide nanoribbons/HS-cyclodextrin/graphene quantum dots composite fifilm. Sens. Actuators B Chem. 2019, 299, 126997. [Google Scholar] [CrossRef]
- Lu, Z.; Zhai, Y.; Liang, Q.Z.; Wu, W. Promoting sensitivity and selectivity of NO2 gas sensor based on metal (Pt, Re, Ta)-doped monolayer WSe2: A DFT study. Chem. Phys. Lett. 2020, 755, 137737. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, G.Q.; Zhu, X.Y.; Guo, Y.C. Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite fifilm at low temperature. Sens. Actuators B Chem. 2017, 251, 280–290. [Google Scholar] [CrossRef]
- Chen, C.Z.; Shen, M.; Li, Y.Z. One pot synthesis of 1T@2H-MoS2/SnS2 heterojunction as a photocatalyst with excellent visible light response due to multiphase synergistic effect. Chem. Phys. 2021, 548, 111230. [Google Scholar] [CrossRef]
- Geng, X.; Lu, P.F.; Zhang, C.; Lahem, D.; Olivier, M.G.; Debliquy, M. Room-temperature NO2 gas sensors based on rGO@ZnO1−x composites: Experiments and molecular dynamics simulation. Sens. Actuators B Chem. 2019, 282, 690–702. [Google Scholar] [CrossRef]
- Drozdowska, K.; Rehman, A.; Krajewska, A.; Lioubtchenko, D.V.; Paviov, K.; Rumyantsev, S.; Smulko, J.; Cywainski, G. Effects of UV light irradiation on fluctuation enhanced gas sensing by carbon nanotube networks. Sens. Actuators B Chem. 2021, 131069. [Google Scholar] [CrossRef]
- Supchocksoonthorn, P.; Hanchaina, R.; Sinoy, M.C.A.; Luna, M.D.G.D.; Kangamasksin, T.; Paoprasert, P. Novel solution- and paper-based sensors based on label-free fluorescent carbon dots for the selective detection of pyrimethanil. Appl. Surf. Sci. 2021, 564, 150372. [Google Scholar] [CrossRef]
- Ibrahim, I.; Lim, H.N.; Huang, N.M. In-situ formation of electron acceptor to inhibit charge separation of photo-electrochemical sensor of dopamine-based CdS/Au/GQDs. Electrochim. Acta 2020, 360, 137013. [Google Scholar] [CrossRef]
- Lu, S.; Chen, M.Z.; Wang, Y.L.; Li, R.; Lin, J.; Zhang, X.T. Highly efficient MoS2/rGO electrocatalysts for triiodide reduction as Pt-free counter electrode for dye-sensitized solar cells. Sol. Energy 2021, 220, 788–795. [Google Scholar] [CrossRef]
- Lv, K.L.; Suo, W.Q.; Shao, M.D.; Zhu, Y.; Wang, X.P.; Feng, J.J.; Fang, M.W. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst forelectroreduction CO2 to CO with high Faradaic efficiency. Nano Energy 2019, 63, 103834. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.S.; Li, M.; Hu, G.H.; Tang, T.; Wen, J.F.; Li, X.Y.; Huang, H.F. Enhanced pseudocapacitive performance of MoS2 by introduction of both N-GQDs and HCNT for flexible supercapacitors. Electrochim. Acta 2021, 370, 137758. [Google Scholar] [CrossRef]
- Wei, L.S.; Cai, J.H.; Li, X.Y.; Wang, X.Y. Fabrication of graphene quantum dots/chitosan composite film and its catalytic reduction for 4-nitrophenol. Ferroelectrics 2019, 548, 124–132. [Google Scholar] [CrossRef]
- Shen, J.H.; Zhu, Y.H.; Yang, X.L.; Li, C.Z. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 2012, 48, 3686–3699. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; Yang, R.; Hill, E.W.; Novoselov, K.S.; Geim, A.K. Chaotic dirac billiard in graphene quantum dots. Science 2008, 320, 356–358. [Google Scholar] [CrossRef] [Green Version]
- Wongrat, E.; Nuengnit, T.; Panyathip, R.; Chanlek, N.; Hongsith, N.; Choopun, S. Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs). Sens. Actuators B Chem. 2020, 326, 128983. [Google Scholar] [CrossRef]
- Chen, Z.L.; Wang, D.; Wang, X.Y.; Yang, J.H. Preparation and formaldehyde sensitive properties of N-GQDs/SnO2 nanocomposite. Chin. Chem. Lett. 2020, 31, 2063–2066. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.L.; Xu, T.; Liao, H.B.; Yao, C.J.; Liu, Y.; Li, Z.; Chen, Z.W.; Pan, D.Y.; Sun, L.T.; et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 2014, 5, 5357. [Google Scholar] [CrossRef] [Green Version]
- Bhangare, B.; Ramgir, N.S.; Pathak, A.; Sinju, K.R.; Debnath, A.K.; Jagtap, S.; Suzuki, N.; Muthe, K.P.; Terashima, C.; Aswal, D.K.; et al. Role of sensitizers in imparting the selective response of SnO2/RGO based nanohybrids towards H2S, NO2 and H2. Mater Sci. Semicond. Process. 2020, 105, 104726. [Google Scholar] [CrossRef]
- Li, L.L.; Ji, J.; Fei, R.; Wang, C.Z.; Lu, Q.; Zhang, J.R.; Jiang, L.P.; Zhu, J.J. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 2012, 22, 2971–2979. [Google Scholar] [CrossRef]
- Chua, C.K.; Sofer, Z.; Simek, P.; Jankovsky, O.; Klimova, K.; Bakardjieva, S.; Kuckova, S.H.; Pumera, M. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 2015, 9, 2548–2555. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Liu, A.M.; Chang, H.Y.; Xia, B.K. Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2 reduced graphene oxide hybrid composite. RSC Adv. 2015, 5, 3016–3022. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Yin, N.L.; Xia, B.K. Facile fabrication of ZnO nanocrystalline-modifified graphene hybrid nanocomposite toward methane gas sensing application. J. Mater. Sci. Mater. Electron. 2015, 26, 5937–5945. [Google Scholar] [CrossRef]
- Sun, Q.H.; Wu, Z.F.; Duan, H.M.; Jia, D.Z. Detection of triacetone triperoxide (TATP) precursors with an array of sensors based on MoS2/RGO composites. Sensors 2019, 19, 1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.L.; Tang, J.; Terabe, K.; Sasaki, T.; Gao, R.S.; Ito, Y.; Nakura, K.; Asano, K.; Suzuki, M. Fabrication of graphene/MoS2 alternately stacked structure for enhanced lithium storage. Mater. Chem. Phys. 2020, 239, 121987. [Google Scholar] [CrossRef]
- Ren, H.B.; Gu, C.P.; Joo, S.W.; Cui, J.Y.; Sun, Y.F.; Huang, J.R. Preparation of SnO2 nanorods on reduced graphene oxide and sensing properties of as-grown nanocomposites towards hydrogen at low working temperature. Mater. Express 2018, 8, 263–271. [Google Scholar] [CrossRef]
- Lecaros, R.L.G.; Bismonte, M.E.; Doma, B.T., Jr.; Hung, W.S.; Hu, C.C.; Tsai, H.A.; Huang, S.H.; Lee, K.R.; Lai, J.Y. Alcohol dehydration performance of pervaporation composite membranes with reduced graphene oxide and graphene quantum dots homostructured fifiller. Carbon 2020, 162, 318–327. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, Y.; Hu, C.G.; Cheng, H.H.; Zhang, Z.P.; Shao, H.B.; Qu, L.T. Graphene quantum dots–three-dimensional graphene composites for high-performance supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 19307–19313. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wang, R.G.; Jiao, W.C.; Ding, G.M.; Hao, L.F.; Yang, F.; He, X.D. MoS2 graphene fifiber based gas sensing devices. Carbon 2015, 95, 34–41. [Google Scholar] [CrossRef]
- Ma, L.; Ye, J.B.; Chen, W.X.; Chen, D.Y.; Lee, J.Y. Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance. Nano Energy 2014, 10, 144–152. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.Q.; Deng, L.; Hou, Y.B.; Qu, L.T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776–780. [Google Scholar] [CrossRef]
- Li, W.Z.; Li, F.; Wang, X.; Tang, Y.; Yang, Y.Y.; Gao, W.B.; Li, R. A facile lyophilization synthesis of MoS2 QDs@graphene as a highly active electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 2017, 401, 190–197. [Google Scholar] [CrossRef]
- Zhang, K.; Ye, M.Q.; Han, A.J.; Yang, J.L. Preparation, characterization and microwave absorbing properties of MoS2 and MoS2-reduced graphene oxide (RGO) composites. J. Solid State Chem. 2019, 277, 68–76. [Google Scholar] [CrossRef]
- Xu, X.B.; Sun, Y.; Qiao, W.; Zhang, X.; Chen, X.; Song, X.Y.; Wu, L.Q.; Zhong, W.; Du, Y.W. 3D MoS2-graphene hybrid aerogels as catalyst for enhanced efficient hydrogen evolution. Appl. Surf. Sci. 2017, 396, 1520–1527. [Google Scholar] [CrossRef]
- Riaz, R.; Ali, M.; Sahito, I.A.; Arbab, A.A.; Maiyalagan, T.; Anjum, A.S.; Ko, M.J.; Jeong, S.H. Self-assembled nitrogen-doped graphene quantum dots (N-GQDs) over graphene sheets for superb electro-photocatalytic activity. Appl. Surf. Sci. 2019, 480, 1035–1046. [Google Scholar] [CrossRef]
- Chen, T.D.; Yan, W.H.; Xu, J.G.; Li, J.H.; Zhang, G.P.; Ho, D. Highly sensitive and selective NO2 sensor based on 3D MoS2/rGO composites prepared by a low temperature self-assembly method. J. Alloys Compd. 2019, 793, 541–551. [Google Scholar] [CrossRef]
- Long, L.N.; Thi, P.T.; Kien, P.T.; Trung, P.T.; Ohta, M.; Kumabe, Y. Controllable synthesis of MoS2/graphene lowdimensional nanocomposites and their electrical properties. Appl. Surf. Sci. 2019, 504, 144193. [Google Scholar] [CrossRef]
- Lkram, M.; Liu, L.J.; Liu, Y.; Ma, L.F.; Lv, H.; Ullah, M.; He, L.; Wu, H.Y.; Wang, R.H.; Shi, K.Y. Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultrasensitive NO2 detection at room temperature. J. Mater. Chem. A 2019, 7, 14602. [Google Scholar]
- Li, W.R.; Xu, H.Y.; Zhai, T.; Yu, H.Q.; Chen, Z.R.; Qiu, Z.W.; Song, X.P.; Wang, J.Q.; Cao, B.Q. Enhanced triethylamine sensing properties by designing Au@SnO2/MoS2 nanostructure directly on alumina tubes. Sens. Actuators B Chem. 2017, 253, 97–107. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Wang, S.Q.; Li, C.; Luo, P.H.; Tao, L.; Wei, Y.; Shi, G.Q. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys. Chem. Chem. Phys. 2013, 15, 9907–9913. [Google Scholar] [CrossRef]
- Shen, J.H.; Zhu, Y.H.; Yang, X.L.; Zong, J.; Zhang, J.M.; Li, C.Z. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 2012, 36, 97–101. [Google Scholar] [CrossRef]
- Xie, M.M.; Su, Y.J.; Lu, X.N.; Zhang, Y.Z.; Yang, Z.; Zhang, Y.F. Blue and green photoluminescence graphene quantum dots synthesized from carbon fifibers. Mater. Lett. 2013, 93, 161–164. [Google Scholar] [CrossRef]
- Hou, X.H.; Wang, Z.W.; Fan, G.J.; Ji, H.P.; Yi, S.S.; Li, T.; Wang, Y.; Zhang, Z.T.; Yuan, L.; Zhang, R.; et al. Hierarchical three-dimensional MoS2/GO hybrid nanostructures for triethylamine-sensing applications with high sensitivity and selectivity. Sens. Actuators B Chem. 2020, 317, 128236. [Google Scholar] [CrossRef]
- Wang, T.; Sun, Z.; Huang, D.; Yang, Z.; Ji, Q.; Hu, N.T.; Yin, G.L.; He, D.N.; Wei, H.; Zhang, Y.F. Studies on NH3 gas sensing by zinc oxide nanowire-reduced graphene oxide nanocomposites. Sens. Actuators B Chem. B 2017, 252, 284–294. [Google Scholar] [CrossRef]
- Wang, C.X.; Jin, J.L.; Sun, Y.Y.; Yao, J.R.; Zhao, G.Z.; Liu, Y.Q. In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite. Chem. Eng. J. 2017, 327, 774–782. [Google Scholar] [CrossRef]
- Huang, D.; Yang, Z.; Li, X.L.; Zhang, L.L.; Hu, J.; Su, Y.J.; Hu, N.T.; Yin, G.L.; He, D.N.; Zhang, Y.F. Three-dimensional conductive networks based on stacked SiO2@graphene frameworks for enhanced gas sensing. Nanoscale 2017, 9, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Silamabarasan, K.; Harish, S.; Hara, K.; Archana, J.; Navaneethan, M. Ultrathin layered MoS2 and N-doped graphene quantum dots (N-GQDs) anchored reduced graphene oxide (rGO) nanocomposite-based counter electrode for dye-sensitized solar cells. Carbon 2021, 181, 107–117. [Google Scholar] [CrossRef]
- Balamurugan, J.; Peera, S.G.; Guo, M.; Nguyen, T.T.; Kim, N.H.; Lee, J.H. A hierarchical 2D Ni-Mo-S nanosheet@nitrogen doped graphene hybrid as a Pt-free cathode for high-performance dye sensitized solar cells and fuel cells. J. Mater. Chem. A 2017, 5, 17896–17908. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, T.; Han, T.Y.; Fei, T.; Liu, S.; Lu, G.Y. Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sens. Actuators B Chem. 2018, 266, 812–822. [Google Scholar] [CrossRef]
- Gui, Y.H.; Wang, H.Y.; Tian, K.; Yang, L.L.; Guo, H.S.; Zhang, H.Z.; Fang, S.M.; Wang, Y. Enhanced gas sensing properties to NO2 of SnO2/rGO nanocomposites synthesized by microwave-assisted gas-liquid interfacial method. Ceram. Int. 2018, 44, 4900–4907. [Google Scholar] [CrossRef] [Green Version]
- Wan, K.C.; Yang, J.L.; Wang, D.; Wang, X.Y. Graphene oxide@3D hierarchical SnO2 nanofifiber/nanosheets nanocomposites for highly sensitive and low-temperature formaldehyde detection. Molecules 2020, 25, 35. [Google Scholar] [CrossRef] [Green Version]
- Bhangare, B.; Ramgir, N.S.; Jagtap, S.; Debnath, A.K.; Muthe, K.P.; Terashima, C.; Aswal, D.K.; Gosavi, S.W.; Fujishima, A. XPS and Kelvin probe studies of SnO2/RGO nanohybrids based NO2 sensors. Appl. Surf. Sci. 2019, 487, 918–929. [Google Scholar]
- Jiang, L.L.; Tu, S.H.; Yu, H.T.; Meng, Y.M.; Zhao, Y.S.; Hou, X.G. Gas sensitivity of heterojunction TiO2NT/GO materials prepared by a simple method with low-concentration acetone. Ceram. Int. 2020, 46, 5344–5350. [Google Scholar] [CrossRef]
- Wang, S.; Wang, P.; Li, Z.; Xiao, C.; Xiao, B.; Zhao, R.; Yang, T.; Zhang, M. Facile fabrication and enhanced gas sensing properties of In2O3 nanoparticles. New J. Chem. 2014, 38, 4879–4884. [Google Scholar] [CrossRef]
- Zhang, S.S.; Zhang, B.; Sun, G.; Li, Y.W.; Zhang, B.; Wang, Y.; Gao, J.L.; Zhang, Z.Y. One-step synthesis of Ag/SnO2/rGO nanocomposites and their trimethylamine sensing properties. Mater. Res. Bull. 2019, 114, 61–67. [Google Scholar] [CrossRef]
- Gong, Y.X.; Wang, Y.; Sun, G.; Jia, T.K.; Jia, L.; Zhang, F.M.; Lin, L.; Zhang, B.Q.; Cao, J.L.; Zhang, Z.Y. Carbon nitride decorated ball-flflower like Co3O4 hybrid composite: Hydrothermal synthesis and ethanol gas-sensing application. Nanomaterials 2018, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Tai, H.; Guo, R.; Yuan, Z.; Liu, C.; Su, Y.; Chen, Z.; Jiang, Y. Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology. Appl. Surf. Sci. 2017, 419, 84–90. [Google Scholar] [CrossRef]
- Cho, B.; Yoon, J.; Lim, S.K.; Kim, A.R.; Kim, D.H.; Park, S.G.; Kwon, J.D.; Lee, Y.J.; Lee, K.H.; Lee, B.H.; et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interface 2015, 7, 16775–16780. [Google Scholar] [CrossRef]
- Guo, T.; Wang, L.N.; Sun, S.; Wang, Y.; Chen, X.L.; Zhang, K.N.; Zhang, D.X.; Xue, Z.H.; Zhou, X.B. Layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots as an enhanced electrochemical hydrogen evolution catalyst. Chin. Chem. Lett. 2019, 30, 1253–1260. [Google Scholar] [CrossRef]
- Sangeetha, M.; Madhan, D. Ultra sensitive molybdenum disulfide (MoS2)/graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method. Opt. Laser Technol. 2020, 127, 106193. [Google Scholar] [CrossRef]
Material | Operating Temperature (°C) | Concentration | Sensitivity | Reference |
---|---|---|---|---|
NiO/SnO2/rGO | RT | 60 ppm | 62.27 | [10] |
MoS2/rGO | 60 °C | 2 ppm | 59.8% | [22] |
3D MoS2/rGO | 80 °C | 1 ppm | 2483% | [54] |
MoS2/WS2 | RT | 50 ppm | 26.12 | [56] |
SnO2/(0.3%)rGO | RT | 10 ppm | 2.021 | [68] |
SnO2/rGO | 200 °C | 4 ppm | 4.56 | [70] |
MoS2/rGO/GQDs | RT | 50 ppm | 23.2% | this work |
MoS2/rGO/GQDs | RT | 5 ppm | 15.2% | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Wang, Y.; Wu, Z.; Zhang, Z.; Hu, N.; Peng, C. Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors. Nanomaterials 2022, 12, 901. https://doi.org/10.3390/nano12060901
Yang C, Wang Y, Wu Z, Zhang Z, Hu N, Peng C. Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors. Nanomaterials. 2022; 12(6):901. https://doi.org/10.3390/nano12060901
Chicago/Turabian StyleYang, Cheng, Yanyan Wang, Zhekun Wu, Zhanbo Zhang, Nantao Hu, and Changsi Peng. 2022. "Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors" Nanomaterials 12, no. 6: 901. https://doi.org/10.3390/nano12060901
APA StyleYang, C., Wang, Y., Wu, Z., Zhang, Z., Hu, N., & Peng, C. (2022). Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors. Nanomaterials, 12(6), 901. https://doi.org/10.3390/nano12060901