The Theoretical Study of Kink Deformation in Graphite Based on Differential Geometric Method
Abstract
:1. Introduction
2. Atomic Model of Graphite with Layered Structure
3. Analysis Method
3.1. Molecular Dynamics Simulation
3.2. Mean Curvature
4. Results and Discussion
4.1. Kink Deformation and Delamination
4.2. Compressive Stress–Strain Curves and Average Potential Energy
4.3. Mean Curvature and Site Potential Energy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
vdW | van der Waals |
MD | molecular dynamics |
GS | graphene sheet |
LAMMPS | large-scale atomic/molecular massively parallel simulator |
AIREBO | adaptive intermolecular reactive empirical bond-order |
LJ | Lennard Jones |
CG | conjugate gradient |
LPSO | long-period stacking ordered |
References
- Paterso, M.S.; Edmond, J.M. Deformation of graphite at high pressures. Carbon 1972, 10, 29–34. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Zhao, X.; Shanazarov, S.; Romanchuk, A.; Koumlis, S.; Pagano, S.J.; Lamberson, L.; Tucker, G. Ripplocations: A universal deformation mechanism in layered solids. Phys. Rev. Mater. 2019, 3, 013602. [Google Scholar] [CrossRef]
- Pan, F.; Wang, G.; Liu, L.; Chen, Y.; Zhang, Z.; Shi, X. Bending induced interlayer shearing, rippling and kink buckling of multilayered graphene sheets. J. Mech. Phys. Solids 2019, 122, 340–363. [Google Scholar] [CrossRef]
- Wallace, P.R. The band theory of graphite. Phys. Rev. 1947, 71, 622–634. [Google Scholar] [CrossRef]
- Yang, B.; Rethinam, R.M.; Mall, S. Modeling and analysis of cylindrical nanoindentation of graphite. J. Appl. Mech. 2009, 76, 011010. [Google Scholar] [CrossRef]
- Rysaeva, L.K.; Lisovenko, D.S.; Gorodtsov, V.A.; Baimova, J.A. Stability, elastic properties and deformation behavior of graphene-based diamond-like phases. Comput. Mater. Sci 2019, 172. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, J.; Liu, Z. Molecular dynamics study on the anisotropic Poisson’s ratio of the graphene. Diamond Relat. Mater. 2019, 93, 66–74. [Google Scholar] [CrossRef]
- Frank, F.C.; Stroh, A.N. On the theory of kinking. Proc. Phys. Soc. B 1952, 65, 811–821. [Google Scholar] [CrossRef]
- Schapery, R.A. Prediction of compressive strength and kink bands in composites using a work potential. Int. J. Solids Struct. 1995, 32, 739–765. [Google Scholar] [CrossRef]
- Fu, Y.B.; Zhang, Y.T. Continuum-mechanical modelling of kink-band formation in fibre-reinforced composites. Int. J. Solids Struct. 2006, 43, 3306–3323. [Google Scholar] [CrossRef] [Green Version]
- Jensen, H.M. Analysis of compressive failure of layered materials by kink band broadening. Int. J. Solids Struct. 1999, 36, 3427–3441. [Google Scholar] [CrossRef]
- Hsu, S.Y.; Vogler, T.J.; Kyriakides, S. On the axial propagation of kink bands in fiber composites: Part ii analysis. Int. J. Solids Struct. 1999, 36, 575–595. [Google Scholar] [CrossRef]
- Moran, P.M.; Shih, C.F. Kink band propagation and broadening in ductile matrix fiber composites: Experiments and analysis. Int. J. Solids Struct. 1998, 35, 1709–1722. [Google Scholar] [CrossRef]
- Steif, P.S. A model for kinking in fiber composites—I. Fiber breakage via micro-buckling. Int. J. Solids Struct. 1990, 26, 549–561. [Google Scholar] [CrossRef]
- Steif, P.S. A model for kinking in fiber composites—II. Kink band formation. Int. J. Solids Struct. 1990, 26, 563–569. [Google Scholar] [CrossRef]
- Vogler, T.J.; Hsu, S.Y.; Kyriakides, S. On the initiation and growth of kink bands in fiber composites: Part I: Experiments. Int. J. Solids Struct. 2001, 38, 2653–2682. [Google Scholar] [CrossRef]
- Hunt, G.W.; Peletier, M.A.; Wadee, M.A. The Maxwell stability criterion in pseudo-energy models of kink banding. J. Struct. Geol. 2000, 22, 669–681. [Google Scholar] [CrossRef] [Green Version]
- Hunt, G.W.; Wadee, M.A.; Peletier, M.A. Friction models of kink-banding in compressed layered structures. In Proceedings of the 5th International Workshop on Bifurcation and Localization Theory in Geomechanics, Lisse, The Netherlands; Swets & Zeitlinger: Lisse, The Netherlands, 2001; pp. 249–256. [Google Scholar]
- Rice, J.R. Tensile crack tip fields in elastic-ideally plastic crystals. Mech. Mater. 1987, 6, 317–335. [Google Scholar] [CrossRef]
- Forest, S.; Boubidi, P.; Sievert, R. Strain localization patterns at a crack tip in generalized single crystal plasticity. Scr. Mater. 2001, 44, 953–958. [Google Scholar] [CrossRef]
- Lei, X.W.; Nakatani, A. A deformation mechanism for ridge-shaped kink structure in layered solids. J. Appl. Mech. 2015, 82, 1–6. [Google Scholar] [CrossRef]
- Lei, X.W.; Nakatani, A. Analysis of kink deformation and delamination behavior in layered ceramics. J. Eur. Ceram. Soc. 2016, 36, 2311–2317. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Murugaiah, A.; Kalidindi, S.R.; Zhen, T.; Gogotsi, Y. Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 2004, 42, 1435–1445. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Zhen, T.; Zhou, A.; Basu, S.; Kalidindi, S.R. Microscale modeling of kinking nonlinear elastic solids. Phys. Rev. B 2005, 71, 134101. [Google Scholar] [CrossRef]
- Cermak, M.; Bahrami, M. Compression behavior of natural graphite sheet. SN Appl. Sci. 2020, 2, 357. [Google Scholar] [CrossRef] [Green Version]
- Joerger, A.; Morstein, C.; Dienwiebel, M.; Albers, A. A numerical approach for the determination of graphite deformation behaviour by using microtribological pressure tests. Wear 2021, 476, 203652. [Google Scholar] [CrossRef]
- Gruber, J.; Barsoum, M.; Tucker, G. Characterization of ripplocation mobility in graphite. Mater. Res. Lett. 2020, 8, 82–87. [Google Scholar] [CrossRef]
- Chen, S.; Chrzan, D.C. Continuum theory of dislocations and buckling in graphene. Phys. Rev. B 2011, 84, 214103. [Google Scholar] [CrossRef]
- Sun, Y.; Holec, D.; Dunstan, D. Graphite under uniaxial compression along the c axis: A parameter to relate out-of-plane strain to in-plane phonon frequency. Phys. Rev. B 2015, 92, 094108. [Google Scholar] [CrossRef] [Green Version]
- Baskin, Y.; Meyer, L. Lattice constants of graphite at low temperatures. Phys. Rev. 1955, 100, 544. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.; Carr, S.; Fang, S.; Kaxiras, E.; Tadmor, E.B. Dihedral-angle-corrected registry-dependent interlayer potential for multilayer graphene structures. Phys. Rev. B 2018, 98, 235404. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Dai, Z.; Xiao, J.; Feng, S.; Weng, C.; Liu, L.; Xu, Z.; Huang, R.; Zhang, Z. Bending of multilayer van der Waals materials. Phys. Rev. Lett. 2019, 123, 116101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.-W.; Shimizu, S.; Shi, J.-X. The Theoretical Study of Kink Deformation in Graphite Based on Differential Geometric Method. Nanomaterials 2022, 12, 903. https://doi.org/10.3390/nano12060903
Lei X-W, Shimizu S, Shi J-X. The Theoretical Study of Kink Deformation in Graphite Based on Differential Geometric Method. Nanomaterials. 2022; 12(6):903. https://doi.org/10.3390/nano12060903
Chicago/Turabian StyleLei, Xiao-Wen, Shungo Shimizu, and Jin-Xing Shi. 2022. "The Theoretical Study of Kink Deformation in Graphite Based on Differential Geometric Method" Nanomaterials 12, no. 6: 903. https://doi.org/10.3390/nano12060903
APA StyleLei, X. -W., Shimizu, S., & Shi, J. -X. (2022). The Theoretical Study of Kink Deformation in Graphite Based on Differential Geometric Method. Nanomaterials, 12(6), 903. https://doi.org/10.3390/nano12060903