Electrospinning Synthesis of Na0.5Bi0.5TiO3 Nanofibers for Dielectric Capacitors in Energy Storage Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, M.-F.; Guo, C.-Q.; Han, J.; Chen, S.-L.; He, S.; Tang, T.-X.; Li, Q.; Strzalka, J.; Ma, J.; Yi, D.; et al. Toroidal polar topology in strained ferroelectric polymer. Science 2021, 371, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Li, F.; Liu, Y.; Zhang, Q.-H.; Wang, M.; Lan, S.; Zheng, Y.-P.; Ma, J.; Gu, L.; Shen, Y.; et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhou, Y.-H.; Zhang, T.-D.; Zhang, C.-H.; Zhang, Y.-Q.; Zhang, Y.; Chen, Q.-G.; Chi, Q.-G. Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Mater. 2020, 25, 180–192. [Google Scholar] [CrossRef]
- Prateek; Thakur, V.-K.; Gupta, R.-K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, X.-F.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K.-C.; Zhang, D.; Bowen, C.-R.; Wan, C.-Y. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424–4465. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.-H. A review on the dielectric materials for high energystorage application. J. Adv. Dielect. 2013, 3, 1330001. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, M.-G.; Ma, R.; Yuan, Q.-B.; Yang, D.-S.; Cui, B.; Ma, C.-R.; Liu, M.; Hu, D.-W. Design strategy of barium titanate/plyvinylidene fluoride-based nanocomposite films for high energy storage. J. Mater. Chem. A 2020, 8, 884–917. [Google Scholar] [CrossRef]
- Liu, X.-R.; Hu, P.-H.; Yu, J.-Y.; Fan, M.-Z.; Ji, X.-M.; Sun, B.-Z.; Shen, Y. Topologically distributed one-dimensional TiO2 nanofillers maximize the dielectric energy density in a P(VDF-HFP) nanocomposite. J. Mater. Chem. A 2020, 8, 18244–18253. [Google Scholar] [CrossRef]
- Jiang, Y.-D.; Zhou, M.-J.; Shen, Z.-H. Ferroelectric polymers and their nanocomposites for dielectric energy storage applications. APL Mater. 2021, 9, 020905. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Liu, Y.; Li, L.; Liu, Y.; Wang, Q. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 2021, 50, 6369–6400. [Google Scholar] [CrossRef]
- Zha, J.-W.; Zheng, M.-S.; Fan, B.-H.; Dang, Z.-M. Polymer-based dielectrics with high permittivity for electric energy storage: A review. Nano Energy 2021, 89, 106438. [Google Scholar] [CrossRef]
- Shen, Z.-H.; Bao, Z.-W.; Cheng, X.-X.; Li, B.-W.; Liu, H.-X.; Shen, Y.; Chen, L.-Q.; Li, X.-G.; Nan, C.-W. Designing polymer nanocomposites with high energy density using machine learning. npj Comput. Mater. 2021, 7, 110. [Google Scholar] [CrossRef]
- Singh, M.; Apata, I.-E.; Samant, S.; Wu, W.; Tawade, B.V.; Pradhan, N.; Raghavan, D.; Karim, A. Nanoscale strategies to enhance the energy storage capacity of polymeric dielectric capacitors: Review of recent advances. Polym. Rev. 2021, 1–50. [Google Scholar] [CrossRef]
- Gnonhoue, O.-G.; Velazquez-Salazar, A.; David, É.; Preda, I. Review of technologies and materials used in high-voltage film capacitors. Polymers 2021, 13, 766. [Google Scholar] [CrossRef]
- Yu, K.; Niu, Y.-J.; Zhou, Y.-C.; Bai, Y.-Y.; Wang, H. Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J. Am. Ceram. Soc. 2013, 96, 2519–2524. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, D.; Jiang, C.; Yuan, X.; Chen, C.; Zhou, K.-C. Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Appl. Mater. Interfaces 2015, 7, 8061–8069. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Chen, H.-Y.; Ye, H.-J.; Liu, A.-P.; Xu, L.-X. Enhanced interfacial polarization in poly(vinylidene fluoride-chlorotrifluoroethylene) nanocomposite with parallel boron nitride nanosheets. Nanotechnology 2020, 31, 165703. [Google Scholar] [CrossRef]
- Pan, Z.-B.; Yao, L.-M.; Zhai, J.-W.; Yang, K.; Shen, B.; Wang, H.-T. Ultrafast discharge and highEnergy density of polymer nanocomposites achieved via optimizing the structure design of barium titanates. ACS Sustain. Chem. Eng. 2017, 5, 4707–4717. [Google Scholar] [CrossRef]
- Tang, H.-X.; Zhou, Z.; Sodano, H.-A. Relationship between BaTiO3 Nanowire aspect ratio and the dielectric permittivity of nanocomposites. ACS Appl. Mater. Interfaces 2014, 6, 5450–5455. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.-H.; Feng, Y.; Zhang, T.-D.; Chen, Q.-G.; Chi, Q.-G.; Liu, L.-Z.; Li, G.-F.; Cui, Y.; Wang, X.; et al. Excellent energy storage performance and thermal property of polymer based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 2019, 56, 138–150. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Y.; Zhang, Q.-H.; Gu, L.; Hu, Y.-H.; Du, J.-W.; Lin, Y.-H.; Nan, C.-W. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 2015, 27, 819–824. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Y.; Xu, B.; Zhang, Q.-H.; Gu, L.; Jiang, J.-Y.; Ma, J.; Lin, Y.-H.; Nan, C.-W. Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv. Mater. 2016, 28, 2055–2061. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J.-Y.; Shen, Z.-H.; Dan, Z.-K.; Li, M.; Lin, Y.-H.; Nan, C.-W.; Chen, L.-Q.; Shen, Y. Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. Adv. Mater. 2018, 30, 1707269. [Google Scholar] [CrossRef]
- Shen, Z.-H.; Wang, J.-J.; Lin, Y.-H.; Nan, C.-W.; Chen, L.-Q.; Shen, Y. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 2018, 30, 1704380. [Google Scholar] [CrossRef]
- Jiang, J.-Y.; Shen, Z.-H.; Cai, X.-K.; Qian, J.-F.; Dan, Z.-K.; Lin, Y.-H.; Liu, B.-L.; Nan, C.-W.; Chen, L.-Q.; Shen, Y. Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv. Energy Mater. 2019, 9, 1803411. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Sun, B.; Zhu, Y.-K.; Li, S.-T.; Jiang, P.-K. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 2019, 100, 187–225. [Google Scholar] [CrossRef]
- Luo, H.; Roscow, J.; Zhou, X.-F.; Chen, S.; Han, X.-H.; Zhou, K.-C.; Zhang, D.; Bowen, C.-R. Ultra-high discharged energy density capacitor using high aspect ratio Na0.5Bi0.5TiO3 nanofibers. J. Mater. Chem. A 2017, 5, 7091–7102. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhang, Y.-J.; Zhan, S.-L.; Sun, C.; Hu, G.-L.; Yang, H.-B.; Yuan, Q.-B. Synergistically ultrahigh energy storage density and efficiency in designed sandwich-structured poly(vinylidene fluoride)-based flexible composite films induced by doping Na0.5Bi0.5TiO3 whiskers. J. Mater. Chem. A 2020, 8, 23427–23435. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.-C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- Dan, Z.-K.; Ren, W.-B.; Guo, M.-F.; Shen, Z.-H.; Zhang, T.; Jiang, J.-Y.; Nan, C.-W.; Shen, Y. Structure design boosts concomitant enhancement of permittivity, breakdown strength, discharged energy density and efficiency in all-organic dielectrics. IET Nanodielectr. 2020, 3, 147–155. [Google Scholar] [CrossRef]
- Wang, M.-L.; Yu, D.-G.; Li, X.-Y.; Williams, G.-R. The development and bio-applications of multifluid electrospinning. Mater. Highlights 2020, 1, 1–13. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.-D.; Cheng, H.; Li, G.-Q.; Cho, H.; Jiang, M.-J.; Gao, Q.; Zhang, X.-W. Developments of advanced electrospinning techniques: A critical review. Adv. Mater. Technol. 2021, 6, 2100410. [Google Scholar] [CrossRef]
- Jiang, J.-Y.; Shen, Z.-H.; Qian, J.-F.; Dan, Z.-K.; Guo, M.-F.; He, Y.; Lin, Y.-H.; Nan, C.-W.; Chen, L.-Q.; Shen, Y. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 2019, 62, 220–229. [Google Scholar] [CrossRef]
- Duft, D.; Achtzehn, T.; Müller, R.; Huber, B.-A.; Leisner, T. Rayleigh jets from levitated microdroplets. Nature 2003, 421, 128. [Google Scholar] [CrossRef]
- Reneker, D.-H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216. [Google Scholar] [CrossRef] [Green Version]
- Hua, J.; Zhang, S.-F.; Tang, B.-T. Rational design of nanomaterials for high energy density dielectric capacitors via electrospinning. Energy Storage Mater. 2021, 37, 530–555. [Google Scholar] [CrossRef]
- Ahmadian, A.; Shafiee, A.; Aliahmad, N.; Agarwal, M. Overview of nano-fiber mats fabrication via electrospinning and morphology analysis. Textiles 2021, 1, 206–226. [Google Scholar] [CrossRef]
- Xue, J.-J.; Wu, T.; Dai, Y.-Q.; Xia, Y.-N. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Pan, Z.-B.; Xing, S.; Jiang, H.-T.; Liu, J.-J.; Huang, S.-W.; Zhai, J.-W. Highly enhanced discharged energy density of polymer nanocomposites via a novel hybrid structure as fillers. J. Mater. Chem. A 2019, 7, 15347–15355. [Google Scholar] [CrossRef]
- Zhou, X.-F.; Xue, G.-L.; Luo, H.; Bowen, C.-R.; Zhang, D. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog. Mater. Sci. 2021, 122, 100836. [Google Scholar] [CrossRef]
- Viola, G.; Tian, Y.; Yu, C.-Y.; Tan, Y.-Q.; Koval, V.; Wei, X.-Y.; Choy, K.-L.; Yan, H.-X. Electric field-induced transformations in bismuth sodium titanate-based materials. Prog. Mater. Sci. 2021, 122, 100837. [Google Scholar] [CrossRef]
- Yang, F.; Bao, S.; Zhai, Y.; Zhang, Y.; Su, Z.; Liu, J.; Zhai, J.-W.; Pan, Z.-B. Enhanced energy-storage performance and thermal stability in Bi0.5Na0.5TiO3-based ceramics through defect engineering and composition design. Mater. Today Chem. 2021, 22, 100583. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Liu, X.-R.; Yu, J.-Y.; Fan, M.-Z.; Ji, X.-M.; Sun, B.-Z.; Hu, P.-H. Optimizing the dielectric energy storage performance in P(VDF-HFP) nanocomposite by modulating the diameter of PZT nanofibers prepared via electrospinning. Compos. Sci Technol. 2019, 184, 107838. [Google Scholar] [CrossRef]
- Taylor, G. Electrically driven jets. Proc. Roy. Soc. Loud. A 1969, 313, 453–475. [Google Scholar]
- Baumgarten, P.-K. Electrostatic spinning of acrylic microfibers. J. Colloid. Interface Sci. 1971, 36, 71–79. [Google Scholar] [CrossRef]
- Megelski, S.; Stephens, J.-S.; Chase, D.-B.; Rabolt, J.-F. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002, 35, 8456–8466. [Google Scholar] [CrossRef]
- Zong, X.-H.; Kim, K.; Fang, D.F.; Ran, S.-F.; Hsiao, B.-S.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43, 4403–4412. [Google Scholar] [CrossRef]
- Zhang, Y.; Jeong, C.-K.; Yang, T.-N.; Sun, H.-J.; Chen, L.-Q.; Zhang, S.-J.; Chen, W.; Wang, Q. Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting. J. Mater. Chem. A 2018, 6, 14546–14552. [Google Scholar] [CrossRef] [Green Version]
- Castkova, K.; Maca, K.; Cihlar, J.; Hughes, H.; Matousek, A.; Tofel, P.; Bai, Y.; Button, T.-W. Chemical synthesis, sintering and piezoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free ceramics. J. Am. Ceram. Soc. 2015, 98, 2373–2380. [Google Scholar] [CrossRef]
- Houssat, M.; Villeneuve-Faure, C.; Dignat, N.-L.; Cambronne, J.-P. Nanoscale mechanical and electrical characterization of the interphase in polyimide/silicon nitride nanocomposites. Nanotechnology 2021, 32, 425703. [Google Scholar] [CrossRef]
- Peng, S.-M.; Zeng, Q.-B.; Yang, X.; Hu, J.; Qiu, X.-H.; He, J.-L. Local dielectric property detection of the interface between nanoparticle and polymer in nanocomposite dielectrics. Sci. Rep. 2016, 6, 38978. [Google Scholar] [CrossRef]
- Peng, S.-M.; Yang, X.; Yang, Y.; Wang, S.-J.; Zhou, Y.; Hu, J.; Li, Q.; He, J.-L. Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 2019, 31, 1807722. [Google Scholar] [CrossRef]
- Guo, R.; Luo, H.; Yan, M.-Y.; Zhou, X.-F.; Zhou, K.-C.; Zhang, D. Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires. Nano Energy 2021, 79, 105412. [Google Scholar] [CrossRef]
- Wang, G.-Y.; Huang, X.-Y.; Jiang, P.-K. Tailoring dielectric properties and energy density of ferroelectric polymer nanocomposites by high-k nanowires. ACS Appl. Mater. Interfaces 2015, 7, 18017–18027. [Google Scholar] [CrossRef]
- Guo, M.; Jiang, J.; Shen, Z.; Lin, Y.; Nan, C.-W.; Shen, Y. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: Enhanced breakdown strength and improved discharge efficiency. Mater. Today 2019, 29, 49–67. [Google Scholar] [CrossRef]
- Liu, S.-H.; Wang, J.; Shen, B.; Zhai, J.-W.; Hao, H.-S.; Zhao, L.-M. Poly(vinylidene fluoride) nanocomposites with a small loading of core-shell structured BaTiO3@Al2O3 nanofibers exhibiting high discharged energy density and efficiency. J. Alloy. Compd. 2017, 696, 136–142. [Google Scholar] [CrossRef]
- Liu, S.-H.; Xue, S.-X.; Zhang, W.-Q.; Zhai, J.-W.; Chen, G.-H. The influence of crystalline transformation of Ba0.6Sr0.4TiO3 nanofibers/poly(vinylidene fluoride) composites on the energy storage properties by quenched technique. Ceram. Int. 2015, 41, S430–S434. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, H.-B.; Zhang, Q.; Zang, J.-D.; Yang, C.; Wang, Q.-P.; Li, M.-Y.; Jiang, S.-L. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. J. Mater. Chem. A 2017, 5, 6070–6078. [Google Scholar] [CrossRef]
Variable | Applied Voltage (kV) | Solution Flow Rate (mL/h) | Collector Rotation Speed (rpm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Set values | 10 | 15 | 20 | 25 | 1.0 | 1.5 | 2.0 | 2.5 | 1000 | 1500 | 2000 | 2500 | 3000 |
dmin (nm) | 260 | 210 | 180 | 100 | 200 | 180 | 200 | 310 | 220 | 200 | 150 | 180 | 150 |
dmax (nm) | 720 | 1000 | 510 | 670 | 500 | 960 | 1000 | 1000 | 960 | 500 | 500 | 500 | 360 |
daverage (nm) | 446 | 407 | 360 | 350 | 326 | 412 | 472 | 660 | 467 | 336 | 331 | 344 | 242 |
Optimized value | 20 kV | 1.0 mL/h | 1500 rpm | ||||||||||
Contribution | Straight | Diameter | Orientation |
Matrix | Fillers/Loadings | εr@1 kHz | Eb (kV/mm) | η (%) | Udis (J/cm3) | Ref. |
---|---|---|---|---|---|---|
PVDF | BaTiO3 nanofibers/4 vol% | 14.69 | 370 | / | 8.78 | [18] |
PVDF | BaTiO3@Al2O3 nanofibers/2.5vol% | ~11 | 380 | 65.1 | 7.1 | [56] |
PVDF | Ba0.6Sr0.4TiO3 nanofibers-APS/2.5 vol% | ~12 | 380 | 60 | 6.8 | [57]. |
P(VDF–CTFE) | Dopa@BaTiO3 nanowires/3 vol% | ~10.5 | 354.9 | 61.4 | 10.8 | [58] |
P(VDF–HFP) | Dopa@Na0.5Bi0.5TiO3 nanofibers/2.37vol% | ~13 | 458 | / | 12.7 | [27] |
PVDF | Na0.5Bi0.5TiO3 nanowires/2wt% | 10.78 | 490 | 53.69 | 14.59 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Luo, H.; Gao, Z.; Xie, H.; Guo, R.; Wang, F.; Zhou, X.; Cao, J.; Zhang, D. Electrospinning Synthesis of Na0.5Bi0.5TiO3 Nanofibers for Dielectric Capacitors in Energy Storage Application. Nanomaterials 2022, 12, 906. https://doi.org/10.3390/nano12060906
Liu Y, Luo H, Gao Z, Xie H, Guo R, Wang F, Zhou X, Cao J, Zhang D. Electrospinning Synthesis of Na0.5Bi0.5TiO3 Nanofibers for Dielectric Capacitors in Energy Storage Application. Nanomaterials. 2022; 12(6):906. https://doi.org/10.3390/nano12060906
Chicago/Turabian StyleLiu, Yuan, Hang Luo, Zhe Gao, Haoran Xie, Ru Guo, Fan Wang, Xuefan Zhou, Jun Cao, and Dou Zhang. 2022. "Electrospinning Synthesis of Na0.5Bi0.5TiO3 Nanofibers for Dielectric Capacitors in Energy Storage Application" Nanomaterials 12, no. 6: 906. https://doi.org/10.3390/nano12060906
APA StyleLiu, Y., Luo, H., Gao, Z., Xie, H., Guo, R., Wang, F., Zhou, X., Cao, J., & Zhang, D. (2022). Electrospinning Synthesis of Na0.5Bi0.5TiO3 Nanofibers for Dielectric Capacitors in Energy Storage Application. Nanomaterials, 12(6), 906. https://doi.org/10.3390/nano12060906