Effect of Substrate Temperature on Morphological, Structural, and Optical Properties of Doped Layer on SiO2-on-Silicon and Si3N4-on-Silicon Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Fabrication
2.2. Sample Characterisation
3. Results and Discussion
3.1. Er-Doped Tellurite Modified Silica (EDTS) on SiO2-on-Silicon Substrate
3.2. Doped Layer on Si3N4-on-Silicon Substrate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanmathi, P.; Sulthana, A.K.T. Hybrid optical amplifier performance in OAF Using OOK and BPSK modulations. In Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2019, Secunderabad, India, 15–17 May 2019; pp. 695–699. [Google Scholar] [CrossRef]
- Ivanovs, G.; Bobrovs, V.; Olonkins, S.; Alsevska, A.; Gegere, L.; Parts, R.; Gavars, P.; Lauks, G. Application of the erbium-doped fiber amplifier (EDFA) in wavelength division multiplexing (WDM) transmission systems. Int. J. Phys. Sci. 2014, 9, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Akcesme, O.; Yucel, M.; Burunkaya, M. The design and implementation of a software based gain control for EDFAs used in long-haul optical networks. Optik 2021, 239, 166850. [Google Scholar] [CrossRef]
- Ahad, M.A.; Paul, M.; Muhd-Yassin, S.; Mansoor, A.; Abdul-Rashid, H. Performance Analysis of an EDFA Utilizing a Partially Doped Core Fiber (PDCF). J. Opt. Commun. 2016, 37, 255–259. [Google Scholar] [CrossRef]
- Al-Azzawi, A.A.; Almukhtar, A.A.; Reddy, P.H.; Das, S.; Dhar, A.; Paul, M.; Arof, H.; Ahmad, H.; Harun, S.W. An efficient wideband hafnia-bismuth erbium co-doped fiber amplifier with flat-gain over 80 nm wavelength span. Opt. Fiber Technol. 2019, 48, 186–193. [Google Scholar] [CrossRef]
- Bradley, J.; Pollnau, M. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photon-Rev. 2010, 5, 368–403. [Google Scholar] [CrossRef]
- AHusein, A.H.M.; El-Nahal, F. Optimizing the EDFA gain for WDM lightwave system with temperature dependency. Optik 2012, 123, 586–589. [Google Scholar] [CrossRef]
- Afify, N.D.; Dalba, G.; Rocca, F. XRD and EXAFS studies on the structure of Er3+-doped SiO2–HfO2 glass-ceramic waveguides: Er3+-activated HfO2 nanocrystals. J. Phys. D Appl. Phys. 2009, 42, 115416. [Google Scholar] [CrossRef]
- Yeatman, E.; Ahmad, M.; McCarthy, O.; Martucci, A.; Guglielmi, M. Sol-Gel Fabrication of Rare-Earth Doped Photonic Components. J. Sol-Gel Sci. Technol. 2000, 19, 231–236. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Shan, Z.; Wang, C.; Zhang, B.; Xu, J.; Wang, R. High content Er3+-doped 25La2O3-75Ga2O3 glass: A potential material for high-power lasers or EDWA. J. Alloy. Compd. 2020, 837, 155477. [Google Scholar] [CrossRef]
- Rönn, J.; Zhang, J.; Zhang, W.; Tu, Z.; Matikainen, A.; Le Roux, X.; Durán-Valdeiglesias, E.; Vulliet, N.; Boeuf, F.; Alonso-Ramos, C.; et al. Erbium-doped hybrid waveguide amplifiers with net optical gain on fully industrial 300 mm silicon nitride photonic platform. Opt. Express 2020, 28, 27919. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, A. Recent developments in rare-earth doped materials for optoelectronics. Prog. Quantum Electron. 2002, 26, 225–284. [Google Scholar] [CrossRef]
- Kamil, S.A.; Chandrappan, J.; Murray, M.; Steenson, P.; Krauss, T.F.; Jose, G. Ultrafast laser plasma doping of Er3+ ions in silica-on-silicon for optical waveguiding applications. Opt. Lett. 2016, 41, 4684–4687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Pham, J. Characteristic Study of Silicon Nitride Films Deposited by LPCVD and PECVD. Silicon 2018, 10, 2561–2567. [Google Scholar] [CrossRef]
- Chandrappan, J.; Murray, M.; Kakkar, T.; Petrik, P.; Agocs, E.; Zolnai, Z.; Steenson, D.; Jha, A.; Jose, G. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping. Sci. Rep. 2015, 5, 14037. [Google Scholar] [CrossRef] [Green Version]
- Chandrappan, J.; Murray, M.; Petrik, P.; Agócs, E.; Zolnai, Z.; Tempez, A.; Legendre, S.; Steenson, D.P.; Jha, A.; Jose, G. Doping silica beyond limits with laser plasma for active photonic materials. Opt. Mater. Express 2015, 5, 2849–2861. [Google Scholar] [CrossRef] [Green Version]
- Chandrappan, J.; Jose, G.; Murray, M. Implantation of Ions Generated by Laser Ablation. U.S. Patent 2021/0040603 A1, 11 February 2021. [Google Scholar]
- Kamil, S.A.; Chandrappan, J.; Portoles, J.; Steenson, P.; Jose, G.; Steenson, D.P. Local structural analysis of erbium-doped tellurite modified silica glass with X-ray photoelectron spectroscopy. Mater. Res. Express 2019, 6, 086220. [Google Scholar] [CrossRef]
- Jose, G.; Chandrappan, J.; Kamil, S.A.; Murray, M.; Zolnai, Z.; Agocs, E.; Petrik, P.; Steenson, P.; Krauss, T. Ultrafast laser plasma assisted rare-earth doping for silicon photonics. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016. [Google Scholar]
- Chandrappan, J.; Khetan, V.; Ward, M.; Murray, M.; Jose, G. Devitrification of ultrafast laser plasma produced metastable glass layer. Scr. Mater. 2017, 131, 37–41. [Google Scholar] [CrossRef]
- Kamil, S.A.; Chandrappan, J.; Krauss, T.F.; Jose, G. Ultrafast laser plasma doping of Er3+ in Si3N4-on-silicon. J. Optoelectron. Adv. Mater. 2019, 21, 710–716. [Google Scholar]
- Molatta, S.; Haindl, S.; Trommler, S.; Schulze, M.; Wurmehl, S.; Hühne, R. Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films. Sci. Rep. 2015, 5, 16334. [Google Scholar] [CrossRef] [Green Version]
- Goldsmid, H.J. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation. Materials 2014, 7, 2577–2592. [Google Scholar] [CrossRef] [Green Version]
- Vu, K.; Madden, S. Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 28dB/cm internal gain. Opt. Express 2010, 18, 19192–19200. [Google Scholar] [CrossRef] [PubMed]
- Patel, F.; DiCarolis, S.; Lum, P.; Venkatesh, S.; Miller, J. A compact high-performance optical waveguide amplifier. IEEE Photonics Technol. Lett. 2004, 16, 2607–2609. [Google Scholar] [CrossRef]
- Irannejad, M.; Jose, G.; Steenson, P.; Jha, A. Enhancement in optical and microstructure properties of Er3+-doped phospho-tellurite glass thin film. Opt. Mater. 2012, 34, 1272–1276. [Google Scholar] [CrossRef]
- Polman, A. Erbium implanted thin film photonic materials. J. Appl. Phys. 1997, 82, 1–39. [Google Scholar] [CrossRef]
- Snoeks, E.; Kik, P.; Polman, A. Concentration quenching in erbium implanted alkali silicate glasses. Opt. Mater. 1996, 5, 159–167. [Google Scholar] [CrossRef]
- Rivera, V.; Chillcce, E.F.; Rodriguez, E.; Cesar, C.; Barbosa, L. Planar waveguides by ion exchange in Er3+-doped tellurite glass. J. Non-Crystalline Solids 2006, 352, 363–367. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, X.; Fang, D.; Xu, S.; Hu, L. Spectroscopic properties and thermal stability of Er3+-doped tungsten–tellurite glass for waveguide amplifier application. J. Alloy. Compd. 2006, 424, 243–246. [Google Scholar] [CrossRef]
- Boetti, N.G.; Lousteau, J.; Chiasera, A.; Ferrari, M.; Mura, E.; Scarpignato, G.C.; Abrate, S.; Milanese, D. Thermal stability and spectroscopic properties of erbium-doped niobic-tungsten–tellurite glasses for laser and amplifier devices. J. Lumin. 2012, 132, 1265–1269. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dong, G.; Peng, M.; Qiu, J. Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 93, 223–227. [Google Scholar] [CrossRef]
- Morel, J.; Woodtli, A.; Daniker, R. Characterization of the fluorescent lifetime of doped fibers by measuring the frequency transfer function. J. Light. Technol. 1996, 14, 739–742. [Google Scholar] [CrossRef]
- Yang, J.; Dai, S.; Dai, N.; Xu, S.; Wen, L.; Hu, L.; Jiang, Z. Effect of Bi2O3 on the spectroscopic properties of erbium-doped bismuth silicate glasses. J. Opt. Soc. Am. B 2003, 20, 810–815. [Google Scholar] [CrossRef]
- de Castro, M.J.; Navarro, J.M.F. Infrared luminescence of erbium-doped sodium lead germanate glass. Appl. Phys. B Lasers Opt. 2012, 106, 669–675. [Google Scholar] [CrossRef]
- Luo, W.; Liao, J.; Li, R.; Chen, X. Determination of Judd–Ofelt intensity parameters from the excitation spectra for rare-earth doped luminescent materials. Phys. Chem. Chem. Phys. 2010, 12, 3276–3282. [Google Scholar] [CrossRef]
- Bai, X.; Jie, W.; Zha, G.; Zhang, W.; Li, P.; Hua, H.; Fu, L. XPS and SRUPS study of oxygen adsorption on Cd0.9Zn0.1Te (111)A surface. Appl. Surf. Sci. 2009, 255, 7966–7969. [Google Scholar] [CrossRef]
- Ogbuu, O.; Du, Q.; Lin, H.; Li, L.; Zou, Y.; Koontz, E.; Smith, C.; Danto, S.; Richardson, K.; Hu, J. Impact of Stoichiometry on Structural and Optical Properties of Sputter Deposited Multicomponent Tellurite Glass Films. J. Am. Ceram. Soc. 2015, 98, 1731–1738. [Google Scholar] [CrossRef]
- Seuthe, T.; Grehn, M.; Mermillod-Blondin, A.; Eichler, H.J.; Bonse, J.; Eberstein, M. Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy. Opt. Mater. Express 2013, 3, 755. [Google Scholar] [CrossRef]
- Qiu, W.; Cheng, C.; Zhao, Y.C.; Li, Q. Residual Stress Measurement in Si-based Multilayer Structure by Micro-Raman Spectroscopy. Optics 2015, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Sigaev, V.N.; Lotarev, S.V.; Orlova, E.V.; Golubev, N.V.; Koltashev, V.V.; Plotnichenko, V.G.; Komandin, G.A. Structure of lanthanum-borogermanate glass with stillwellite composition according to vibrational spectroscopy data. Glas. Ceram. 2010, 67, 105–108. [Google Scholar] [CrossRef]
- Neuville, D.R.; De Ligny, D.; Henderson, G.S. Advances in raman spectroscopy applied to earth and materials science. In Spectroscopic Methods in Mineralogy and Material Sciences; Henderson, G.S., Neuville, D.R., Eds.; The Mineralogical Society of America: Chantilly, VA, USA, 2015. [Google Scholar]
- Ghoshal, S.; Awang, A.; Sahar, M.; Arifin, R. Gold nanoparticles assisted surface enhanced Raman scattering and luminescence of Er3+ doped zinc–sodium tellurite glass. J. Lumin. 2015, 159, 265–273. [Google Scholar] [CrossRef]
- Dousti, M.R.; Sahar, M.; Amjad, R.J.; Ghoshal, S.; Awang, A. Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium–zinc–tellurite glass. J. Lumin. 2013, 143, 368–373. [Google Scholar] [CrossRef]
- Sekiya, T.; Mochida, N.; Soejima, A. Raman spectra of binary tellurite glasses containing tri- or tetra-valent cations. J. Non-Crystalline Solids 1995, 191, 115–123. [Google Scholar] [CrossRef]
- Robinet, L.; Coupry, C.; Eremin, K.; Hall, C. The use of Raman spectrometry to predict the stability of historic glasses. J. Raman Spectrosc. 2006, 37, 789–797. [Google Scholar] [CrossRef]
- Suresh, B.; Zhydachevskii, Y.; Brik, M.; Suchocki, A.; Reddy, M.S.; Piasecki, M.; Veeraiah, N. Amplification of green emission of Ho3+ ions in lead silicate glasses by sensitizing with Bi3+ ions. J. Alloy. Compd. 2016, 683, 114–122. [Google Scholar] [CrossRef]
- Bourhis, K.; Shpotyuk, Y.; Massera, J.; Aallos, V.; Jouan, T.; Boussard-Pledel, C.; Bureau, B.; Petit, L.; Koponen, J.; Hupa, L.; et al. Thermal and structural characterization of erbium-doped borosilicate fibers with low silica content containing various amounts of P2O5 and Al2O3. Opt. Mater. 2014, 37, 87–92. [Google Scholar] [CrossRef]
- Calahoo, C.M.; Zwanziger, J.W.; Butler, I.S. Mechanical–Structural Investigation of Ion-Exchanged Lithium Silicate Glass using Micro-Raman Spectroscopy. J. Phys. Chem. C 2016, 120, 7213–7232. [Google Scholar] [CrossRef]
- McMillan, P. Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am. Mineral. 1984, 69, 622–644. [Google Scholar]
- Srivastava, M.; Grips, V.W.; Rajam, K. Influence of SiC, Si3N4 and Al2O3 particles on the structure and properties of electrodeposited Ni. Mater. Lett. 2008, 62, 3487–3489. [Google Scholar] [CrossRef]
- Dobkin, D.M.; Zuraw, M.K. Principles of Chemical Vapor Deposition: What’s Going on Inside the Reactor; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Zhang, W.; Wu, S.; Chen, X. Effects of substrate temperature and ambient oxygen pressure on growth of Ba(Fe1/2Nb1/2)O3 thin films by pulsed laser deposition. Chin. Sci. Bull. 2013, 58, 3398–3402. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Sreenivas, K. Pulsed laser deposition of zinc oxide (ZnO). In Zinc Oxide Bulk, Thin Films and Nanostructures; Jagadish, C., Pearton, S., Eds.; Elsevier: Chennai, India, 2006; pp. 85–174. [Google Scholar]
- Chun, Z.; Qin-Yuan, Z.; Yue-Xiao, P.; Zhong-Hong, J. Effects of Nb2O5 on thermal stability and optical properties of Er3+-doped tellurite glasses. Chin. Phys. 2006, 15, 2158–2164. [Google Scholar] [CrossRef]
- Polman, A.; Jacobson, D.C.; Eaglesham, D.J.; Kistler, R.C.; Poate, J.M. Optical doping of waveguide materials by MeV Er implantation. J. Appl. Phys. 1991, 70, 3778–3784. [Google Scholar] [CrossRef]
- Gong, Y.; Yerci, S.; Li, R.; Negro, L.D.; Vucković, J. Enhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures. Opt. Express 2009, 17, 20642–20650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaosebikan, D.; Yerci, S.; Gondarenko, A.; Preston, K.; Li, R.; Negro, L.D.; Lipson, M. Absorption bleaching by stimulated emission in erbium-doped silicon-rich silicon nitride waveguides. Opt. Lett. 2010, 36, 4–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | EDTS Thickness Measured with SEM (µm) | EDTS Thickness Measured with Prism Coupler (µm) | SiO2 Thickness of the Layer below EDTS Measured with SEM (µm) | Refractive Index |
---|---|---|---|---|
B400 | - | - | 1.03 ± 0.03 | - |
B570 | 0.81 ± 0.06 | 0.83 ± 0.05 | 0.56 ± 0.06 | 1.5587 ± 0.0004 |
B700 | 1.10 ± 0.03 | 1.10 ± 0.01 | 0.22 ± 0.06 | 1.5285 ± 0.0002 |
Element | Elemental Concentration (at. %) | |||||
---|---|---|---|---|---|---|
B400 (at. %) | B570 (at. %) | B700 (at. %) | ||||
EDX-SEM | XPS | EDX-SEM | XPS | EDX-SEM | XPS | |
O | 50.69 | 52.24 | 61.01 | 58.51 | 60.91 | 58.40 |
Si | 1.67 | 1.85 | 21.47 | 28.90 | 20.99 | 28.79 |
Na | 7.94 | 10.18 | 8.57 | 5.72 | 9.68 | 7.08 |
Zn | 6.60 | 6.95 | 6.77 | 3.50 | 7.14 | 4.57 |
Te | 32.21 | 27.08 | 1.74 | 2.89 | 0.73 | 0.59 |
Er | 0.89 | 1.70 | 0.44 | 0.48 | 0.55 | 0.57 |
Sample | FWHM (nm) | PL lifetime (µm) |
---|---|---|
B400 | 38 | 5.26 |
B570 | 20 | 12.29 |
B700 | 20 | 11.12 |
Sample | Thickness (µm) | |
---|---|---|
Upper Layer | Si3N4 under Upper Layer | |
K470 | 1.1 ± 0.1 | 0.87 ± 0.04 |
K520 | 1.5 ± 0.4 | 0.74 ± 0.03 |
K570 | 1.5 ± 0.3 | 0.66 ± 0.03 |
K600 | 1.8 ± 0.3 | 0.60 ± 0.05 |
K650 | 2.0 ± 0.3 | 0.57 ± 0.09 |
Sample | Concentration (µm) | |
---|---|---|
Position 1 | Position 2 | |
O | 58.79 | 15.86 |
Si | 2.25 | 39.49 |
Te | 23.70 | 2.83 |
Zn | 5.78 | 1.23 |
Na | 8.45 | 1.54 |
Er | 0.65 | 0.02 |
N | 0.38 | 39.03 |
Sample | FWHM (nm) | PL Lifetime (µm) |
---|---|---|
K470 | 33 | 4.97 |
K520 | 20 | 10.43 |
K570 | 20 | 9.94 |
K600 | 20 | 9.71 |
K650 | 20 | 9.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamil, S.A.; Jose, G. Effect of Substrate Temperature on Morphological, Structural, and Optical Properties of Doped Layer on SiO2-on-Silicon and Si3N4-on-Silicon Substrate. Nanomaterials 2022, 12, 919. https://doi.org/10.3390/nano12060919
Kamil SA, Jose G. Effect of Substrate Temperature on Morphological, Structural, and Optical Properties of Doped Layer on SiO2-on-Silicon and Si3N4-on-Silicon Substrate. Nanomaterials. 2022; 12(6):919. https://doi.org/10.3390/nano12060919
Chicago/Turabian StyleKamil, Suraya Ahmad, and Gin Jose. 2022. "Effect of Substrate Temperature on Morphological, Structural, and Optical Properties of Doped Layer on SiO2-on-Silicon and Si3N4-on-Silicon Substrate" Nanomaterials 12, no. 6: 919. https://doi.org/10.3390/nano12060919
APA StyleKamil, S. A., & Jose, G. (2022). Effect of Substrate Temperature on Morphological, Structural, and Optical Properties of Doped Layer on SiO2-on-Silicon and Si3N4-on-Silicon Substrate. Nanomaterials, 12(6), 919. https://doi.org/10.3390/nano12060919