An Evolutionary and Environmental Perspective of the Interaction of Nanomaterials with the Immune System
- Do nanomaterials pose threats to the organisms’ integrity or do the immune defensive mechanisms successfully deal with them?
- Can we exploit our understanding of nano-immune interactions to devise nano-based tools to improve immune responses in vaccination?
- Can we identify immune rections that are common across living organisms, and therefore we can use for a general nanosafety assessment of environmental and human health?
Funding
Acknowledgments
Conflicts of Interest
References
- Pinsino, A.; Bastús, N.G.; Busquets-Fité, M.; Canesi, L.; Cesaroni, P.; Drobne, D.; Duschl, A.; Ewart, M.-A.; Gispert, I.; Horejs-Höck, J.; et al. Probing the immunological responses to nanoparticles across environmental species: A perspective of the EU-funded PANDORA project. Environ. Sci. Nano 2020, 7, 3216–3232. [Google Scholar] [CrossRef]
- Ernst, L.M.; Casals, E.; Italiani, P.; Boraschi, D.; Puntes, V. The interaction between nanoparticles and the innate immune system from a nanotechnologist perspective. Nanomaterials 2021, 11, 2991. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E.; Barbero, F.; Busquet-Fité, M.; Franz-Wachtel, M.; Köhler, H.-R.; Puntes, V.; Kemmerling, B. Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis thaliana seedlings. Nanomaterials 2021, 11, 3161. [Google Scholar] [CrossRef] [PubMed]
- Navarro Pacheco, N.I.; Roubalova, R.; Semerad, J.; Grasserova, A.; Benada, O.; Kofronova, O.; Cajthmi, T.; Dvorak, J.; Bilej, M.; Prochazkova, P. In vitro interactions of TiO2 nanoparticles with earthworm coelomocytes: Immunotoxicity assessment. Nanomaterials 2021, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Mayall, C.; Dolar, A.; Kokaij, A.J.; Novak, S.; Razinger, J.; Barbero, F.; Puntes, V.; Drobne, D. Stressor-dependent changes in immune parameters in the terrestrial isopod crustacean Porcellio scaber: A focus on nanomaterials. Nanomaterials 2021, 11, 934. [Google Scholar] [CrossRef] [PubMed]
- Auguste, M.; Mayall, C.; Barbero, F.; Hočevar, M.; Alberti, S.; Grassi, G.; Puntes, V.F.; Drobne, D.; Canesi, L. Functional and morphological changes induced in Mytilus hemocytes by selected nanoparticles. Nanomaterials 2021, 11, 470. [Google Scholar] [CrossRef] [PubMed]
- Catalano, R.; Labille, J.; Gaglio, D.; Alijagic, A.; Napodano, E.; Slomberg, D.; Campos, A.; Pinsino, A. Safety evaluation of TiO2 nanoparticle-based sunscreen UV filters on the development and the immunological state of the sea urchin Paracentrotus lividus. Nanomaterials 2020, 10, 2102. [Google Scholar] [CrossRef] [PubMed]
- Swart, E.; Dvorak, J.; Hernádi, S.; Goodall, T.; Kille, P.; Spurgeon, D.; Svendsen, C.; Prochazkova, P. The effects of in vivo exposure to copper dioxide nanoparticles on the gut microbiome, host immunity and susceptibility to bacterial infection in earthworms. Nanomaterials 2020, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
- Boraschi, D.; Italiani, P. From antigen delivery to adjuvanticity: The broad application of nanoparticles in vaccinology. Vaccines 2015, 3, 930–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, R.; Liu, H.; Wang, M.; Li, J.; Liang, M.; Gao, Y.; Yang, M. An OMV-based nanovaccine confers safety and protection against pathogenic Escherichia coli via both humoral anmd predominantly Th1 immune responses in poultry. Nanomaterials 2020, 10, 2293. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.M.F.; Kanno, A.I.; Farias, L.P.; Madej, M.; Sipos, G.; Sbrana, S.; Romani, L.; Boraschi, D.; Leite, L.C.C.; Italiani, P. Primary and memory response of human monocytes to vaccines: Role of nanoparticulate antigens in inducing innate memory. Nanomaterials 2021, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Swartzwelter, B.J.; Mayall, C.; Alijagic, A.; Barbero, F.; Ferrari, E.; Hernádi, S.; Michelini, S.; Navarro Pacheco, N.I.; Prinelli, A.; Swart, E.; et al. Cross-species comparisons of nanoparticle interactions with innate immune systems: A methodological review. Nanomaterials 2021, 11, 1528. [Google Scholar] [CrossRef] [PubMed]
- Boraschi, D.; Li, D.; Li, Y.; Italiani, P. In vitro and in vivo models to assess the immune-related effects of nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 11769. [Google Scholar] [CrossRef] [PubMed]
- Auguste, M.; Melillo, D.; Corteggio, A.; Marino, R.; Canesi, L.; Pinsino, A.; Italiani, P.; Boraschi, D. Methodological approaches to assess innate immunity and innate memory in marine invertebrates and humans. Front. Toxicol. 2022, 4, 842469. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boraschi, D. An Evolutionary and Environmental Perspective of the Interaction of Nanomaterials with the Immune System. Nanomaterials 2022, 12, 957. https://doi.org/10.3390/nano12060957
Boraschi D. An Evolutionary and Environmental Perspective of the Interaction of Nanomaterials with the Immune System. Nanomaterials. 2022; 12(6):957. https://doi.org/10.3390/nano12060957
Chicago/Turabian StyleBoraschi, Diana. 2022. "An Evolutionary and Environmental Perspective of the Interaction of Nanomaterials with the Immune System" Nanomaterials 12, no. 6: 957. https://doi.org/10.3390/nano12060957
APA StyleBoraschi, D. (2022). An Evolutionary and Environmental Perspective of the Interaction of Nanomaterials with the Immune System. Nanomaterials, 12(6), 957. https://doi.org/10.3390/nano12060957