Oxidation of Supported Nickel Nanoparticles at Low Exposure to O2: Charging Effects and Selective Surface Activity
Abstract
:1. Introduction
2. Materials and Experiment
3. Results and Discussion
3.1. Initial Chemical Composition
3.2. Atomic Structure
3.3. Charge Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aguilhon, J.; Boissière, C.; Durupthy, O.; Thomazeau, C.; Sanchez, C. Nickel Nanoparticles with Controlled Morphologies Application in Selective Hydrogenation Catalysis. Stud. Surf. Sci. Catal. 2010, 175, 521–524. [Google Scholar] [CrossRef]
- Spindler, J.F.; Cordier, G.; Jenck, J.; Fouilloux, P. Selective Hydrogenation of Adiponitrile (ADN) to Hexamethylenediamine (HMD) in the Liquid Phase on Raney Catalysts: Synergetic Effect Between the Base in the Solution and the Iron Dope on the Catalyst. Stud. Surf. Sci. Catal. 1993, 75, 2555–2558. [Google Scholar] [CrossRef]
- Carrero, A.; Calles, J.A.; García-Moreno, L.; Vizcaíno, A.J. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr) Catalysts Supported on SBA-15 Silica. Catalysts 2017, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Acomb, J.C.; Wu, C.; Williams, P.T. The Use of Different Metal Catalysts for the Simultaneous Production of Carbon Nanotubes and Hydrogen from Pyrolysis of Plastic Feedstocks. Appl. Catal. B 2016, 180, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Naef, N.U.; Seeger, S. Silicone Nanofilament Support Layers in an Open-Channel System for the Fast Reduction of Para-Nitrophenol. Nanomaterials 2021, 11, 1663. [Google Scholar] [CrossRef]
- Shang, H.; Pan, K.; Zhang, L.; Zhang, B.; Xiang, X. Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds. Nanomaterials 2016, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Gatin, A.; Grishin, M.; Dokhlikova, N.; Ozerin, S.; Sarvadii, S.; Kharitonov, V.; Shub, B. Effect of Size on Hydrogen Adsorption on the Surface of Deposited Gold Nanoparticles. Nanomaterials 2019, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- Sarvadiy, S.Y.; Gatin, A.K.; Grishin, M.V.; Kharitonov, V.A.; Kolchenko, N.N.; Dokhlikova, N.V.; Shub, B.R. Electric Field–Prevented Adsorption of Hydrogen on Supported Gold Nanoparticles. Gold Bull. 2019, 52, 61–67. [Google Scholar] [CrossRef]
- Pacchioni, G.; Freund, H.-J. Controlling the Charge State of Supported Nanoparticles in Catalysis: Lessons from Model Systems. Chem. Soc. Rev. 2018, 47, 8474–8502. [Google Scholar] [CrossRef] [Green Version]
- Gatin, A.K.; Grishin, M.V.; Dokhlikova, N.V.; Sarvadii, S.Y.; Shub, B.R. Hydrogenation of HOPG-supported Gold Nanoparticles: Features of Initial Stages. Crystals 2019, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Sarvadii, S.Y.; Gatin, A.K.; Kharitonov, V.A.; Dokhlikova, N.V.; Ozerin, S.A.; Grishin, M.V.; Shub, B.R. Effect of CO Molecule Orientation on the Reduction of Cu-Based Nanoparticles. Nanomaterials 2021, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.; Smith, G.T.; Inwood, D.W.; Leach, A.S.; Whalley, P.S.; Callisti, M.; Polcar, T.; Russell, A.E.; Levecque, P.; Kramer, D. Electronic Metal-Support Interaction Enhanced Oxygen Reduction Activity and Stability of Boron Carbide Supported Platinum. Nat. Commun. 2017, 8, 15802. [Google Scholar] [CrossRef] [PubMed]
- Gatin, A.K.; Grishin, M.V.; Sarvadii, S.Y.; Shub, B.R. Interaction of gaseous reagents on gold and nickel nanoparticles. Russ. J. Phys. Chem. B 2018, 12, 317–324. [Google Scholar] [CrossRef]
- Güntherodt, H.J.; Wiesendanger, R. (Eds.) Scanning Tunneling Microscopy I: General Principles and Applications to Clean and Absorbate-Covered Surfaces; Springer: Berlin, Germany, 1994; p. 280. [Google Scholar] [CrossRef]
- Fitzer, E.; Kochling, K.-H.; Boehm, H.P.; Marsh, H. Recommended terminology for the description of carbon as a solid (IUPAC recommendations 1995). Pure Appl. Chem. 1995, 67, 473–506. [Google Scholar] [CrossRef]
- Brockner, W.; Ehrhardt, C.; Gjikaj, M. Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O. Thermochim. Acta 2007, 456, 64–68. [Google Scholar] [CrossRef]
- Meyer, E.; Hug, H.J.; Bennewitz, R. (Eds.) Scanning Probe Microscopy; Springer: Berlin/Heidelberg, Germany, 2004; p. 210. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.W.; McKee, C.S. Chemistry of the Metal-Gas Interface; Clarendon Press: Oxford, UK, 1979; p. 594. [Google Scholar] [CrossRef]
- Quinn, C.M.; Roberts, M.W. Nature of Thin Oxide Films on Metals as Revealed by Work Function Measurements. Nature 1963, 200, 648–649. [Google Scholar] [CrossRef]
- Quinn, C.M.; Roberts, M.W. Chemisorption of Oxygen and Subsequent Processes on Metal Films: Work Function Measurements. Trans. Faraday Soc. 1964, 60, 899–912. [Google Scholar] [CrossRef]
- Irwin, M.D.; Buchholz, D.B.; Hains, A.W.; Chang, R.P.H.; Marks, T.J. p-Type Semiconducting Nickel Oxide as an Efficiency-Enhancing Anode Interfacial Layer in Polymer Bulk-Heterojunction Solar Cells. Proc. Natl. Acad. Sci. USA 2008, 105, 2783–2787. [Google Scholar] [CrossRef] [Green Version]
- Gatin, A.K.; Grishin, M.V.; Gurevich, S.A.; Dokhlikova, N.V.; Kirsankin, A.A.; Kozhevin, V.M.; Lokteva, E.S.; Rostovshchikova, T.N.; Sarvadii, S.Y.; Shub, B.R.; et al. Adsorption of Hydrogen on Nickel Nanoparticles with Different Crystallinity. Nanotechnol. Rus. 2015, 10, 850–857. [Google Scholar] [CrossRef]
- Shaw, D. (Ed.) Atomic Diffusion in Semiconductors; Plenum Press: London, UK, 1973; p. 614. [Google Scholar] [CrossRef]
- Sørensen, O.T. (Ed.) Nonstoichiometric Oxides; Academic Press: New York, NY, USA, 1981; p. 442. [Google Scholar] [CrossRef]
- Goncharova, O.I.; Yurieva, T.M. Catalytic Properties of Nickel Oxide and its Solid Solutions in Magnesium Oxide in Hydrogen Oxidation. React. Kinet. Catal. Lett. 1980, 15, 73–78. [Google Scholar] [CrossRef]
- Zangwill, A. Physics at Surfaces; Cambridge University Press: Cambridge, UK, 1988; p. 454. [Google Scholar] [CrossRef]
- Simmons, J.G. Image Force in Metal-Oxide-Metal Tunnel Junctions. In Tunneling Phenomena in Solids; Burstein, E., Lundqvist, S., Eds.; Plenum Press: New York, NY, USA, 1969; p. 579. [Google Scholar] [CrossRef]
- Simonov, P.A.; Likholobov, V.A. Physicochemical Aspects of Preparation of Carbon-Supported Noble Metal Catalysts. In Catalysis and Electrocatalysis at Nanoparticle Surfaces; Wieckowski, A., Savinova, E.R., Vayenas, C.G., Eds.; CRC Press: Boca Raton, FL, USA, 2003; p. 970. [Google Scholar] [CrossRef]
- Haynes, W.M. (Ed.) CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL, USA, 2016; p. 2670. [Google Scholar] [CrossRef]
- Kiselev, V.F.; Krylov, O.V. Adsorption and Catalysis on Transition Metals and Their Oxides; Springer: Berlin/Heidelberg, Germany, 1989; p. 445. [Google Scholar] [CrossRef]
- Liantang, L.; Nordlander, P.; Hellsing, B. Theoretical Study of O2 Dissociation on Copper and Nickel Clusters. Surf. Sci. 1994, 320, 320–330. [Google Scholar] [CrossRef]
- Sarvadii, S.Y.; Gatin, A.K.; Dokhlikova, N.V.; Kharitonov, V.A.; Ozerin, S.A.; Doronin, S.V.; Grishin, M.V.; Shub, B.R. Hydrogenation of HOPG-Supported Gold Nanoparticles: Surface or Volume? Crystals 2021, 11, 597. [Google Scholar] [CrossRef]
- Krylov, O.V.; Shub, B.R. Nonequilibrium Processes in Catalysis; CRC Press: Boca Raton, FL, USA, 1994; p. 312. [Google Scholar] [CrossRef]
- Sakata, T.; Sakata, K. Change of Oxygen Concentration with Temperature of the Nickel and Cobalt Oxide Solid Solution. J. Phys. Soc. Jap. 1958, 13, 675–683. [Google Scholar] [CrossRef]
- Wagner, C.; Koch, E. Die elektrische Leitfähigkeit der Oxyde des Kobalts und Eisens (Mit einem Anhang über Rekristallisation von Zinkoxyd). Z. Phys. Chem. 1936, 32B, 439–446. [Google Scholar] [CrossRef]
- Chen, W.K.; Jackson, R.A. Oxygen self-diffusion in undoped and doped cobaltous oxide. J. Phys. Chem. Solids 1969, 30, 1309–1314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatin, A.K.; Sarvadii, S.Y.; Dokhlikova, N.V.; Kharitonov, V.A.; Ozerin, S.A.; Shub, B.R.; Grishin, M.V. Oxidation of Supported Nickel Nanoparticles at Low Exposure to O2: Charging Effects and Selective Surface Activity. Nanomaterials 2022, 12, 1038. https://doi.org/10.3390/nano12071038
Gatin AK, Sarvadii SY, Dokhlikova NV, Kharitonov VA, Ozerin SA, Shub BR, Grishin MV. Oxidation of Supported Nickel Nanoparticles at Low Exposure to O2: Charging Effects and Selective Surface Activity. Nanomaterials. 2022; 12(7):1038. https://doi.org/10.3390/nano12071038
Chicago/Turabian StyleGatin, Andrey K., Sergey Y. Sarvadii, Nadezhda V. Dokhlikova, Vasiliy A. Kharitonov, Sergey A. Ozerin, Boris R. Shub, and Maxim V. Grishin. 2022. "Oxidation of Supported Nickel Nanoparticles at Low Exposure to O2: Charging Effects and Selective Surface Activity" Nanomaterials 12, no. 7: 1038. https://doi.org/10.3390/nano12071038
APA StyleGatin, A. K., Sarvadii, S. Y., Dokhlikova, N. V., Kharitonov, V. A., Ozerin, S. A., Shub, B. R., & Grishin, M. V. (2022). Oxidation of Supported Nickel Nanoparticles at Low Exposure to O2: Charging Effects and Selective Surface Activity. Nanomaterials, 12(7), 1038. https://doi.org/10.3390/nano12071038