Recent Developments of Quantum Dot Materials for High Speed and Ultrafast Lasers
Abstract
:1. Introduction
2. Growth Methods of QD Materials
2.1. Top-Down Approaches
2.2. Bottom-Up Approaches
2.2.1. Selective Growth Technology
2.2.2. Self-Assembled QD Technology
3. Physics and Device Properties of QDs
3.1. Physical Properties of QD Materials
3.1.1. Modal Gain
3.1.2. Temperature-Dependent Optical Properties
3.1.3. Carrier Dynamics
Carrier Transport and Capture
Carrier Relaxation
3.2. Device Properties Based on QD Materials
3.2.1. Small Linewidth Enhancement Factor
3.2.2. Low Threshold Current Density
3.2.3. High Temperature Insensitivity
3.2.4. Modulation Characteristics
3.2.5. High Optical Feedback Tolerance
4. QD Lasers towards Fiber-Optic Communication
4.1. Active Lasers
4.1.1. F–P Lasers
4.1.2. Distributed Feedback Lasers
4.1.3. Vertical Cavity Surface Emitting Lasers
4.2. Passive Lasers
QD-SESAM Mode-Locked Lasers
5. Conclusions and Outlook
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dingle, R.; Gossard, A.C.; Wiegmann, W. Direct Observation of Superlattice Formation in a Semiconductor Heterostructure. Phys. Rev. Lett. 1975, 34, 1327–1330. [Google Scholar] [CrossRef]
- van der Ziel, J.P.; Dingle, R.; Miller, R.C.; Wiegmann, W.; Nordland, W.A. Laser oscillation from quantum states in very thin GaAs−Al0.2Ga0.8As multilayer structure. Appl. Phys. Lett. 1975, 26, 463–465. [Google Scholar] [CrossRef]
- Dupuis, R.D.; Dapkus, P.D.; Nick, H., Jr.; Rezek, E.A.; Chin, R. Room-temperature laser operation of quantum-well Ga(1−x)AlxAs-GaAs laser diodes grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1978, 32, 295–297. [Google Scholar] [CrossRef]
- Holonyak, N., Jr.; Kolbas, R.M.; Dupuis, R.D.; Dapkus, P.D. Quantum-well heterostructure lasers. IEEE J. Quantum Electron. 1980, 16, 170–186. [Google Scholar] [CrossRef]
- Tsang, W.T. Extremely low threshold (AlGa)As modified multiquantum well heterostructure lasers grown by molecular-beam epitaxy. Appl. Phys. Lett. 1981, 39, 786–788. [Google Scholar] [CrossRef]
- Chin, R.; Holonyak, N., Jr.; Vojak, B.A.; Hess, K.; Dupuis, R.D.; Dapkus, P.D. Temperature dependence of threshold current for quantum-well AlxGa1−xAs-GaAs heterostructure laser diodes. Appl. Phys. Lett. 1980, 36, 19–21. [Google Scholar] [CrossRef]
- Arakawa, Y.; Vahala, K.; Yariv, A. Quantum noise and dynamics in quantum well and quantum wire lasers. Appl. Phys. Lett. 1984, 45, 950–952. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, Y.; Yariv, A. Quantum well lasers—Gain, spectra, dynamics. IEEE J. Quantum Electron. 1986, 22, 1887–1899. [Google Scholar] [CrossRef] [Green Version]
- Dingle, R.; Henry, C.H. Quantum Effects in Heterostructure Lasers. U.S. Patent 3982207 A, 21 September 1976. [Google Scholar]
- Temkin, H.; Coblentz, D.; Logan, R.A.; van der Ziel, J.P.; Tanbun-Ek, T.; Yadvish, R.D.; Sergent, A.M. High temperature characteristics of InGaAsP/InP laser structures. Appl. Phys. Lett. 1993, 62, 2402–2404. [Google Scholar] [CrossRef]
- Takemasa, K.; Munakata, T.; Kobayashi, M.; Wada, H.; Kamijoh, T. High-temperature operation of 1.3 µm AlGaInAs strained multiple quantum well lasers. Electron. Lett. 1998, 34, 1231–1233. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Kovsh, A.R. Quantum dot diode lasers for optical communication systems. Quantum Electron. 2008, 38, 409–423. [Google Scholar] [CrossRef]
- Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40, 939–941. [Google Scholar] [CrossRef]
- Asada, M.; Miyamoto, Y.; Suematsu, Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron. 1986, 22, 1915–1921. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Miyake, Y.; Asasa, M.; Suematsu, Y. Threshold current density of GaInAsP/InP quantum-box lasers. IEEE J. Quantum Electron. 1989, 25, 2001–2006. [Google Scholar] [CrossRef]
- Hirayama, H.; Matsunaga, K.; Asada, M.; Suematsu, Y. Lasing action of Ga0.67In0.33As/GaInAsP/InP tensile-strained quantum-box laser. Electron. Lett. 1994, 30, 142–143. [Google Scholar] [CrossRef]
- Eaglesham, D.J.; Cerullo, M. Dislocation-free Stranski-Krastanow growth of Ge on Si (100). Phys. Rev. Lett. 1990, 64, 1943–1946. [Google Scholar] [CrossRef]
- Koguchi, N.; Takahashi, S.; Chikyow, T. New MBE growth method for InSb quantum well boxes. J. Cryst. Growth 1991, 111, 688–692. [Google Scholar] [CrossRef]
- Kirstaedter, N.; Ledentsov, N.N.; Grundmann, M.; Bimberg, D.; Ustinov, V.M.; Ruvimov, S.S.; Maximov, M.V.; Kop’ev, P.S.; Alferov, Z.I.; Richter, U.; et al. Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron. Lett. 1994, 30, 1416–1417. [Google Scholar] [CrossRef]
- Huffaker, D.L.; Park, G.; Zou, Z.; Shchekin, O.B.; Deppe, D.G. 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett. 1998, 73, 2564–2566. [Google Scholar] [CrossRef]
- Fafard, S.; Hinzer, K.; Raymond, S.; Dion, M.; McCaffrey, J.; Feng, Y.; Charbonneau, S. Red-Emitting Semiconductor Quantum Dot Lasers. Science 1996, 274, 1350–1353. [Google Scholar] [CrossRef]
- Rafailov, E.U.; Cataluna, M.A.; Sibbett, W. Mode-locked quantum-dot lasers. Nat. Photonics 2007, 1, 395–401. [Google Scholar] [CrossRef]
- Bimberg, D.; Grundmann, M.; Heinrichsdorff, F.; Ledentsov, N.N.; Ustinov, V.M.; Zhukov, A.E.; Kovsh, A.R.; Maximov, M.V.; Shernyakov, Y.M.; Volovik, B.V.; et al. Quantum dot lasers: Breakthrough in optoelectronics. Thin Solid Films 2000, 367, 235–249. [Google Scholar] [CrossRef]
- Liu, H.Y.; Sellers, I.R.; Badcock, T.J.; Mowbray, D.J.; Skolnick, M.S.; Groom, K.M.; Gutiérrez, M.; Hopkinson, M.; Ng, J.S.; David, J.P.R. Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer. Appl. Phys. Lett. 2004, 85, 704–706. [Google Scholar] [CrossRef]
- Fathpour, S.; Mi, Z.; Bhattacharya, P. High-speed quantum dot laser. J. Phys. D Appl. Phys. 2005, 38, 2103–2111. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Ghosh, S.; Pradhan, S.; Singh, J.; Wu, Z.K.; Urayama, J.; Kim, K.; Norris, T.B. Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron. 2003, 39, 952–962. [Google Scholar] [CrossRef]
- Deppe, D.G.; Huang, H.; Shchekin, O.B. Modulation characteristics of quantum-dot lasers: The influence of p-type doping and the electronic density of states on obtaining high speed. IEEE J. Quantum Electron. 2002, 38, 1587–1593. [Google Scholar] [CrossRef]
- Asryan, L.V.; Luryi, S. Tunneling-injection quantum-dot laser: Ultrahigh temperature stability. IEEE J. Quantum Electron. 2001, 37, 905–910. [Google Scholar] [CrossRef]
- Ghosh, S.; Pradhan, S.; Bhattacharya, P. Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature. Appl. Phys. Lett. 2002, 81, 3055–3057. [Google Scholar] [CrossRef]
- Kovsh, A.R.; Maleev, N.A.; Zhukov, A.E.; Mikhrin, S.S.; Vasil’ev, A.P.; Shernyakov, Y.M.; Maximov, M.V.; Livshits, D.A.; Ustinov, V.M.; Alferov, Z.I.; et al. InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with high (88%) differential efficiency. Electron. Lett. 2002, 38, 1104–1106. [Google Scholar] [CrossRef]
- Liu, H.Y.; Childs, D.T.; Badcock, T.J.; Groom, K.M.; Sellers, I.R.; Hopkinson, M.; Hogg, R.A.; Robbins, D.J.; Mowbray, D.J.; Skolnick, M.S. High-performance three-layer 1.3-μm In As-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents. IEEE Photonics Technol. Lett. 2005, 17, 1139–1141. [Google Scholar] [CrossRef] [Green Version]
- Fathpour, S.; Mi, Z.; Bhattacharya, P.; Kovsh, A.R.; Mikhrin, S.S.; Krestnikov, I.L.; Kozhukhov, A.V.; Ledentsov, N.N. The role of Auger recombination in the temperature-dependent output characteristics (T0 = ∞) of p-doped 1.3 μm quantum dot lasers. Appl. Phys. Lett. 2004, 85, 5164–5166. [Google Scholar] [CrossRef]
- Kageyama, T.; Takada, K.; Nishi, K.; Yamaguchi, M.; Mochida, R.; Maeda, Y.; Kondo, H.; Takemasa, K.; Tanaka, Y.; Yamamoto, T.; et al. Long-wavelength quantum dot FP and DFB lasers for high temperature applications. In Proceedings of the Novel In-Plane Semiconductor Lasers XI, Proceedings of SPIE, San Francisco, CA, USA, 21–26 January 2012; Volume 8277. [Google Scholar]
- Kageyama, T.; Nishi, K.; Yamaguchi, M.; Mochida, R.; Maeda, Y.; Takemasa, K.; Tanaka, Y.; Yamamoto, T.; Sugawara, M.; Arakawa, Y. Extremely High Temperature (220 °C) Continuous-Wave Operation of 1300-nm-range Quantum-Dot Lasers. In Proceedings of the European Conference on Lasers and Electro Optics, Munich, Germany, 22–26 May 2011. [Google Scholar]
- Sugawara, M.; Usami, M. Handling the heat. Nat. Photonics 2009, 3, 30–31. [Google Scholar] [CrossRef]
- Seravalli, L.; Frigeri, P.; Trevisi, G.; Franchi, S. 1.59 μm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates. Appl. Phys. Lett. 2008, 92, 213104. [Google Scholar] [CrossRef]
- Majid, M.A.; Childs, D.T.D.; Shahid, H.; Chen, S.; Kennedy, K.; Airey, R.J.; Hogg, R.A.; Clarke, E.; Howe, P.; Spencer, P.D.; et al. Toward 1550-nm GaAs-Based Lasers Using InAs/GaAs Quantum Dot Bilayers. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1334–1342. [Google Scholar] [CrossRef]
- Richter, M.; Damilano, B.; Massies, J.; Duboz, J.Y.; Wieck, A.D. InAs/In0.15Ga0.85As1−xNx quantum dots for 1.5 μm laser applications. Mater. Rsr. Soc. Symp. Proc. 2005, 891, 0891-EE23-29. [Google Scholar] [CrossRef]
- Ripalda, J.M.; Granados, D.; González, Y.; Sánchez, A.M.; Molina, S.I.; García, J.M. Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb. Appl. Phys. Lett. 2005, 87, 202108. [Google Scholar] [CrossRef] [Green Version]
- Ledentsov, N.N.; Kovsh, A.R.; Zhukov, A.E.; Maleev, N.A.; Mikhrin, S.S.; Vasil’ev, A.P.; Semenova, E.S.; Maximov, M.V.; Shernyakov, Y.M.; Kryzhanovskaya, N.V.; et al. High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range. Electron. Lett. 2003, 39, 1126–1128. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Oehler, A.E.H.; Resan, B.; Kurmulis, S.; Zhou, K.J.; Wang, Q.; Mangold, M.; Süedmeyer, T.; Keller, U.; Weingarten, K.J.; et al. 1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser. Sci. Rep. 2012, 2, 477. [Google Scholar] [CrossRef] [Green Version]
- Saito, H.; Nishi, K.; Sugou, S. Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates. Appl. Phys. Lett. 2001, 78, 267. [Google Scholar] [CrossRef]
- Schwertberger, R.; Gold, D.; Reithmaier, J.P.; Forchel, A. Long-Wavelength InP-Based Quantum-Dash Lasers. IEEE Photonics Technol. Lett. 2002, 14, 735. [Google Scholar] [CrossRef]
- Ukhanov, A.A.; Wang, R.H.; Rotter, T.J.; Stintz, A.; Lester, L.F.; Eliseev, P.G.; Malloy, K.J. Orientation dependence of the optical properties in InAs quantum-dash lasers on InP. Appl. Phys. Lett. 2002, 81, 981. [Google Scholar] [CrossRef]
- Norman, J.C.; Jung, D.; Zhang, Z.; Wan, Y.; Liu, S.; Shang, C.; Herrick, R.W.; Chow, W.W.; Gossard, A.C.; Bowers, J.E. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron. 2019, 55, 2000511. [Google Scholar] [CrossRef]
- Cao, V.; Park, J.; Tang, M.; Zhou, T.; Seeds, A.; Chen, S.; Liu, H. Recent progress of quantum dot lasers monolithically integrated on Si platform. Front. Phys. 2022, 10, 839953. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Cao, M.; Shingai, Y.; Furuya, K.; Suematsu, Y.; Ravikumar, K.G.; Arai, S. Light Emission from Quantum-Box Structure by Current Injection. Jpn. J. Appl. Phys. 1987, 26, L225–L227. [Google Scholar] [CrossRef]
- Clausen, E.M.; Craighead, H.G.; Warlock, J.M.; Harbison, J.P.; Schiavone, L.M.; Florez, L.; Van der Gaag, B. Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs. Appl. Phys. Lett. 1989, 55, 1427–1429. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Sakuma, Y.; Muto, S.; Yokoyama, N. Novel InGaAs/GaAs quantum dot structures formed in tetrahedral-shaped recesses on (111) B GaAs substrate using metalorganic vapor phase epitaxy. Appl. Phys. Lett. 1995, 67, 256–258. [Google Scholar] [CrossRef]
- Ishida, S.; Arakawa, Y.; Wada, K. Seeded self-assembled GaAs quantum dots grown in two-dimensional V grooves by selective metal–organic chemical-vapor deposition. Appl. Phys. Lett. 1998, 72, 800–802. [Google Scholar] [CrossRef]
- Nagamune, Y.; Nishioka, M.; Tsukamoto, S.; Arakawa, Y. GaAs quantum dots with lateral dimension of 25 nm fabricated by selective metalorganic chemical vapor deposition growth. Appl. Phys. Lett. 1994, 64, 2495–2497. [Google Scholar] [CrossRef]
- Fukui, T.; Ando, S.; Tokura, Y.; Toriyama, T. GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition. Appl. Phys. Lett. 1991, 58, 2018–2020. [Google Scholar] [CrossRef]
- Hartmann, A.; Loubies, L.; Reinhardt, F.; Gustafsson, A.; Sadeghi, A.; Kapon, E. The evolution of self-ordered quantum dot heterostructures grown on non-planar GaAs {111} B substrates. Appl. Surf. Sci. 1998, 123, 329–334. [Google Scholar] [CrossRef]
- Franchi, S.; Trevisi, G.; Seravalli, L.; Frigeri, P. Quantum dot nanostructures and molecular beam epitaxy. Prog. Cryst. Growth Charact. Mater. 2003, 47, 166–195. [Google Scholar] [CrossRef]
- Hogg, R.A.; Zhang, Z.Y. Quantum Dot Technologies. In The Physics and Engineering of Compact Quantum Dot-Based Lasers for Biophotonics; Rafailov, E.U., Ed.; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Seifert, W.; Carlsson, N.; Johansson, J.; Pistol, M.E.; Samuelson, L. In Situ growth of nano-structures by metal-organic vapour phase epitaxy. J. Cryst. Growth 1997, 170, 39–46. [Google Scholar] [CrossRef]
- Kwoen, J.; Jang, B.; Watanabe, K.; Arakawa, Y. High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt. Express 2019, 27, 2681–2688. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.; Jurczak, P.; Tang, M.; Li, K.; Pan, S.; Sanchez, A.; Beanland, R.; Zhang, J.C.; Wang, H.; et al. All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates. J. Phys. D Appl. Phys. 2021, 54, 035103. [Google Scholar] [CrossRef]
- Fitch, C.R.; Marko, I.P.; Baltušis, A.; Jung, D.; Norman, J.C.; Bowers, J.E.; Sweeney, S.J. Carrier recombination properties of low-threshold 1.3 μm quantum dot lasers on silicon. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1900210. [Google Scholar] [CrossRef]
- Koguchi, N.; Ishige, K.; Takahashi, S. New selective molecular-beam epitaxial growth method for direct formation of GaAs quantum dots. J. Vac. Sci. Technol. B 1993, 11, 787–790. [Google Scholar] [CrossRef]
- Mano, T.; Kuroda, T.; Mitsuishi, K.; Nakayama, Y.; Noda, T.; Sakoda, K. GaAs/AlGaAs quantum dot laser fabricated on GaAs (311) A substrate by droplet epitaxy. Appl. Phys. Lett. 2008, 93, 203110. [Google Scholar] [CrossRef]
- Tuktamyshev, A.; Fedorov, A.; Bietti, S.; Vichi, S.; Zeuner, K.D.; Jons, K.D.; Chrastina, D.; Tsukamoto, S.; Zwiller, V.; Gurioli, M.; et al. Telecom-wavelength InAs QDs with low fine structure splitting grown by droplet epitaxy on GaAs(111)A vicinal substrates. Appl. Phys. Lett. 2021, 118, 133102. [Google Scholar] [CrossRef]
- Grundmann, M.; Christen, J.; Ledentsov, N.N.; Böhrer, J.; Bimberg, D.; Ruvimov, S.S.; Werner, P.; Richter, U.; Gösele, U.; Heydenreich, J.; et al. Ultranarrow Luminescence Lines from Single Quantum Dots. Phys. Rev. Lett. 1995, 74, 4043–4046. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Meng, X.Q.; Jin, P.; Li, C.M.; Qu, S.C.; Xu, B.; Ye, X.L.; Wang, Z.G. A novel application to quantum dot materials to the active region of superluminescent diodes. J. Cryst. Growth 2002, 243, 25–29. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Hogg, R.A.; Lv, X.Q.; Wang, Z.G. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv. Opt. Photonics 2010, 2, 201–228. [Google Scholar] [CrossRef]
- Hou, C.C.; Chen, H.M.; Zhang, J.C.; Zhuo, N.; Huang, Y.Q.; Hogg, R.A.; Childs, D.T.D.; Ning, J.Q.; Wang, Z.G.; Liu, F.Q.; et al. Near-infrared and mid-infrared semiconductor broadband light emitters. Light Sci. Appl. 2018, 7, 17170. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Maksimov, M.V.; Kovsh, A.R. Device characteristics of long-wavelength lasers based on self-organized quantum dots. Semiconductors 2012, 46, 1225–1250. [Google Scholar] [CrossRef]
- Salhi, A.; Fortunato, L.; Martiradonna, L.; Cingolani, R.; Vittirio, M.D.; Passaseo, A.J. Enhanced modal gain of multilayer InAs/InGaAs/GaAs quantum dot lasers emitting at 1300 nm. Appl. Phys. 2006, 100, 123111. [Google Scholar] [CrossRef]
- Lester, L.F.; Stintz, A.; Li, H.; Newell, T.C.; Pease, E.A.; Fuchs, B.A.; Malloy, K.J. Optical characteristics of 1.24-μm InAs quantum-dot laser diodes. IEEE Photonics Technol. Lett. 1999, 11, 931–933. [Google Scholar] [CrossRef]
- Salhi, A.; Raino, G.; Fortunato, L.; Tasco, V.; Visimberga, G.; Martiradonna, L.; Todaro, M.T.; Giorgi, M.D.; Cingolani, R.; Trampert, A.; et al. A Enhanced Performances of Quantum Dot Lasers Operating at 1.3 μm. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 1188–1196. [Google Scholar] [CrossRef]
- Maximov, M.V.; Ustinov, V.M.; Zhukov, A.E.; Kryzhanovskaya, N.V.; Payusov, A.S.; Novikov, I.I.; Gordeev, N.Y.; Shernyakov, Y.M.; Krestnikov, I.; Livshits, D. A 1.33 µm InAs/GaAs quantum dot laser with a 46 cm−1 modal gain. Semicond. Sci. Technol. 2008, 23, 105004. [Google Scholar] [CrossRef]
- Amano, T.; Aoki, S.; Sugaya, T.; Komori, K.; Okada, Y. Laser Characteristics of 1.3-μm Quantum Dots Laser with High-Density Quantum Dots. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 1273–1278. [Google Scholar] [CrossRef]
- Salhi, A.; Martiradonna, L.; Visimberga, G.; Tasco, V.; Fortunato, L.; Todaro, M.T.; Cingolani, R.; Passaseo, A.; Vittorio, M.D. High-modal gain 1300-nm In(Ga)As-GaAs quantum-dot lasers. IEEE Photonics Technol. Lett. 2006, 18, 1735–1737. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ishida, M.; Takada, K.; Yamamoto, T.; Song, H.Z.; Nakata, Y.; Yamaguchi, M.; Nishi, K.; Sugawara, M.; Arakawa, Y. 25 Gbps Direct Modulation in 1.3-μm InAs/GaAs High-Density Quantum Dot Lasers. In Proceedings of the Conference on Lasers and Electro-Optics, San-Jose, CA, USA, 16–21 May 2010. [Google Scholar]
- Tanaka, K.; Tanaka, Y.; Matsumoto, T.; Ekawa, M.; Song, H.Z.; Nakata, Y.; Yamaguchi, M.; Nishi, K.; Yamamoto, T.; Sugawara, M.; et al. Wide-temperature-range 10.3 Gbit/s operations of 1.3 µm high-density quantum-dot DFB lasers. Electron. Lett. 2011, 47, 206–208. [Google Scholar]
- Liu, G.T.; Stintz, A.; Li, H.; Newell, T.C.; Gray, A.L.; Varangis, P.M.; Malloy, K.J.; Lester, L.F. The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures. IEEE J. Quantum Electron. 2000, 36, 1272–1279. [Google Scholar] [CrossRef]
- Todaro, M.T.; Salhi, A.; Fortunato, L.; Cingolani, R.; Passaseo, A.; Vittorio, M.D.; Casa, P.D.; Ghiglieno, F.; Bianco, L. High-Performance Directly Modulated 1.3-μm Undoped InAs–InGaAs Quantum-Dot Lasers. IEEE Photonics Technol. Lett. 2007, 19, 191–193. [Google Scholar] [CrossRef]
- Li, Q.Z.; Wang, X.; Zhang, Z.Y.; Chen, H.M.; Huang, Y.Q.; Hou, C.C.; Wang, J.; Zhang, R.Y.; Ning, J.Q.; Min, J.H.; et al. Development of Modulation p-Doped 1310 nm InAs/GaAs Quantum Dot Laser Materials and Ultrashort Cavity Fabry–Perot and Distributed-Feedback Laser Diodes. ACS Photonics 2018, 5, 1084–1093. [Google Scholar] [CrossRef]
- Mano, T.; Nötzel, R.; Gong, Q.; Lippen, T.V.; Hamhuis, G.J.; Eijkemans, T.J.; Wolter, J.H. Temperature-Dependent Photoluminescence of Self-Assembled (In,Ga)As Quantum Dots on GaAs (100): Carrier Redistribution through Low-Energy Continuous States. Jpn. J. Appl. Phys. 2005, 44, 6829–6832. [Google Scholar] [CrossRef]
- Mazur, Y.I.; Liang, B.L.; Wang, Z.M.; Tarasov, G.G.; Guzun, D.; Salamo, G.J. Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots. J. Appl. Phys. 2007, 101, 014301. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, Q.; Chen, S.; Tang, M.; Mazur, Y.I.; Maidaniuk, Y.; Benamara, M.; Semtsiv, M.P.; Masselink, W.T.; Sablon, K.A.; et al. Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates. ACS Photonics 2016, 3, 749–753. [Google Scholar] [CrossRef]
- Kumagai, N.; Watanabe, K.; Nakata, Y.; Arakawa, Y. Optical properties of p-type modulation-doped InAs quantum dot structures grown by molecular beam epitaxy. J. Cryst. Growth 2007, 301, 805–808. [Google Scholar] [CrossRef]
- Wen, X.M.; Dao., L.V.; Davis, J.A.; Hannaford, P.; Mokkapati, S.; Tan, H.H.; Jagadish, C. Carrier dynamics in p-type InGaAs/GaAs quantum dots. J. Mater. Sci. Mater. Electron. 2007, 18, S363–S365. [Google Scholar] [CrossRef]
- Zhou, X.L.; Chen, Y.H.; Liu, J.Q.; Jia, C.H.; Zhou, G.Y.; Ye, X.L.; Xu, B.; Wang, Z.G. Temperature dependent photoluminescence of an In(Ga)As/GaAs quantum dot system with different areal density. J. Phys. D Appl. Phys. 2010, 43, 295401. [Google Scholar] [CrossRef]
- Zhou, X.L.; Chen, Y.H.; Jia, C.H.; Ye, X.L.; Xu, B.; Wang, Z.G. Interplay effects of temperature and injection power on photoluminescence of InAs/GaAs quantum dot with high and low areal density. J. Phys. D Appl. Phys. 2010, 43, 485102. [Google Scholar] [CrossRef]
- Su, L.; Liang, B.; Wang, Y.; Guo, Q.; Li, X.; Wang, S.; Fu, G.; Mazur, Y.I.; Ware, M.E.; Salamo, G.J. The continuum state in photoluminescence of type-II In0.46Al0.54As/Al0.54Ga0.46As quantum dots. Appl. Phys. Lett. 2016, 109, 183103. [Google Scholar] [CrossRef]
- Chaâbani, W.; Melliti, A.; Maaref, M.A.; Testelin, C.; Lemaître, A. Rapid thermal annealing and modulation-doping effects on InAs/GaAs quantum dots photoluminescence dependence on excitation power. Physica B 2016, 493, 53–57. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jiang, Q.; Luxmoore, I.J.; Hogg, R.A. A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap. Nanotechnology 2009, 20, 055204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Jiang, Q.; Hogg, R.A. Tunable interband and intersubband transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by postgrowth annealing process. Appl. Phys. Lett. 2008, 93, 071111. [Google Scholar] [CrossRef]
- Marcinkevičius, S. Dynamics of Carrier Transfer into In(Ga)As Self-assembled Quantum Dots. In Self-Assembled Quantum Dots; Wang, Z.M., Ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Marcinkevičius, S.; Leon, R. Photoexcited carrier transfer in InGaAs quantum dot structures: Dependence on the dot density. Appl. Phys. Lett. 2000, 76, 2406–2408. [Google Scholar] [CrossRef]
- Jang, Y.D.; Park, J.; Lee, D.; Mowbray, D.J.; Skolnick, M.S.; Liu, H.Y.; Hopkinson, M.; Hogg, R.A. Enhanced room-temperature quantum-dot effects in modulation-doped InAs/GaAs quantum dots. Appl. Phys. Lett. 2009, 95, 171902. [Google Scholar] [CrossRef]
- Liu, H.Y.; Meng, Z.M.; Dai, Q.F.; Wu, L.J.; Guo, Q.; Hu, W.; Liu, S.H.; Lan, S.; Yang, T. Ultrafast carrier dynamics in undoped and p-doped InAs/GaAs quantum dots characterized by pump-probe reflection measurements. J. Appl. Phys. 2008, 103, 083121. [Google Scholar] [CrossRef]
- Klimov, V.I.; Schwarz, C.J.; McBranch, D.W.; Leatherdale, C.A.; Bawendi, M.G. Ultrafast dynamics of inter- and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasers. Phys. Rev. B 1999, 60, R2177–R2180. [Google Scholar] [CrossRef]
- Malik, S.; Ru, E.C.L.; Childs, D.; Murray, R. Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots. Phys. Rev. B 2001, 63, 155313. [Google Scholar] [CrossRef]
- Zibik, E.A.; Wilson, L.R.; Green, R.P.; Bastard, G.; Ferreira, R.; Phillips, P.J.; Carder, D.A.; Wells, J.-P.R.; Cockburn, J.W.; Skolnick, M.S.; et al. Intraband relaxation via polaron decay in InAs self-assembled quantum dots. Phys. Rev. B 2004, 70, 161305. [Google Scholar] [CrossRef]
- Sun, K.W.; Chen, J.W.; Lee, B.C.; Lee, C.P.; Kechiantz, A.M. Carrier capture and relaxation in InAs quantum dots. Nanotechnology 2005, 16, 1530–1535. [Google Scholar] [CrossRef] [Green Version]
- Magnusdottir, I.; Uskov, A.V.; Bischoff, S.; Tromborg, B.; Mørk, J. One- and two-phonon capture processes in quantum dots. J. Appl. Phys. 2002, 92, 5982–5990. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, J.; Cundiff, S.T.; Arzberger., M.; Böhm, G.; Abstreiter, G. Carrier capture into InAs/GaAs quantum dots via multiple optical phonon emission. J. Appl. Phys. 2001, 89, 1180–1183. [Google Scholar] [CrossRef]
- Magnusdottir, I.; Bischoff, S.; Uskov, A.V.; Mørk, J. Geometry dependence of Auger carrier capture rates into cone-shaped self-assembled quantum dots. Phys. Rev. B 2003, 67, 205326. [Google Scholar] [CrossRef] [Green Version]
- Siegert, J.; Marcinkevičius, S.; Zhao, Q.X. Carrier dynamics in modulation-doped InAs/GaAs quantum dots. Phys. Rev. B 2005, 72, 085316. [Google Scholar] [CrossRef]
- Urayama, J.; Norris, T.B.; Singh, J.; Bhattacharya, P. Observation of Phonon Bottleneck in Quantum Dot Electronic Relaxation. Phys. Rev. Lett. 2001, 86, 4930–4933. [Google Scholar] [CrossRef] [PubMed]
- Quochi, F.; Dinu, M.; Bonadeo, N.H.; Shah, J.; Pfeiffer, L.N.; West, K.W.; Platzman, P.M. Ultrafast carrier dynamics of resonantly excited 1.3-μm InAs/GaAs self-assembled quantum dots. Physica B 2002, 314, 263–267. [Google Scholar] [CrossRef]
- Gündoğdu, K.; Hall, K.C.; Boggess, T.F.; Deppe, D.G.; Shchekin, O.B. Ultrafast carrier dynamics of resonantly excited 1.3-μm InAs/GaAs self-assembled quantum dots. Appl. Phys. Lett. 2004, 85, 4570–4572. [Google Scholar] [CrossRef] [Green Version]
- Bimberg, D.; Grundmann, M.; Ledentsov, N.N. Quantum Dot Heterostructures; John Wiley & Sons: Chichester, UK, 1999. [Google Scholar]
- Newell, T.C.; Bossert, D.J.; Stintz, A.; Fuchs, B.; Malloy, K.J.; Lester, L.F. Gain and linewidth enhancement factor in InAs quantum-dot laser diodes. IEEE Photonics Technol. Lett. 1999, 11, 1527–1529. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Chuang, S.L. Theoretical and Experimental Study of Optical Gain, Refractive Index Change, and Linewidth Enhancement Factor of p-Doped Quantum-Dot Lasers. IEEE J. Quantum Electron. 2006, 45, 942–952. [Google Scholar] [CrossRef]
- Duan, J.; Huang, H.; Jung, D.; Zhang, Z.; Norman, J.; Bowers, J.E.; Grillot, F. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl. Phys. Lett. 2018, 112, 251111. [Google Scholar] [CrossRef]
- Alferov, Z.I.; Andreev, V.M.; Portnoi, E.L.; Trukan, M.K. AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold. Fiz. I Tekhnika Poluprovodn. 1969, 3, 1328–1332. [Google Scholar]
- Alferov, Z.I.; Andreev, V.M.; Garbuzov, D.Z.; Zhilyaev, Y.V.; Morozov, E.P.; Portnoi, E.L.; Trofim, V.G. Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and realization of continuous emission at room temperature. Sov. Phys. Semicond. 1970, 4, 1573–1575. [Google Scholar]
- Hayashi, I.; Panish, M.B.; Foy, P.W.; Sumski, S. Junction lasers which operate continuously at room temperature. Appl. Phys. Lett. 1970, 17, 109–111. [Google Scholar] [CrossRef]
- Miller, R.C.; Dingle, R.; Gossard, A.C.; Logan, R.A.; Nordland, W.A., Jr.; Wiegmann, W. Laser oscillation with optically pumped very thin GaAs-AlxGa1−xAs multilayer structures and conventional double heterostructures. J. Appl. Phys. 1976, 47, 4509–4517. [Google Scholar] [CrossRef]
- Dupuis, R.D.; Dapkus, P.D. Room-temperature operation of Ga(1−x)AlxAs/GaAs double-heterostructure lasers grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1977, 31, 466–468. [Google Scholar] [CrossRef]
- Tsang, W.T. Extremely low threshold (AlGa)As graded-index waveguide separate-confinement heterostructure lasers grown by molecular-beam epitaxy. Appl. Phys. Lett. 1982, 40, 217–219. [Google Scholar] [CrossRef]
- Alferov, Z.I.; Andreev, V.M.; Ivanov, S.V.; Kopev, P.S.; Ledentsov, N.N.; Lutsenko, M.E.; Meltser, B.Y.; Ustinov, V.M. Reduction of threshold current-density in GaAs/AlGaAs DHS quantum-dimensional lasers (JN=52 A/cm2, T=300 K) under the limitation of a quantum hole by the short-period superlattice with variable-pitch. Pisma V Zhurnal Tekhnicheskoi Fiziki 1988, 14, 1803–1807. [Google Scholar]
- Chand, N.; Becker, E.E.; van der Ziel, J.P.; Chu, S.N.G.; Dutta, N.K. Excellent uniformity and very low (<50 A/cm2) threshold current density strained InGaAs quantum well diode lasers on GaAs sunstrate. Appl. Phys. Lett. 1991, 58, 1704–1706. [Google Scholar] [CrossRef]
- Egawa, T.; Ogawa, A.; Jimbo, T.; Umeno, M. AlGaAs/GaAs laser diodes with GaAs islands active regions on Si grown by droplet epitaxy. Jpn. J. Appl. Phys. 1998, 37, 1552–1555. [Google Scholar] [CrossRef]
- Kazi, Z.I.; Egawa, T.; Umeno, M.; Jimbo, T. Growth of InxGa1−xAs quantum dots by metal-organic chemical vapor deposition on Si substrates and in GaAs-based lasers. J. Appl. Phys. 2001, 90, 5463–5468. [Google Scholar] [CrossRef]
- Lee, A.D.; Jiang, Q.; Tang, M.; Zhang, Y.; Seeds, A.; Liu, H. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1901107. [Google Scholar] [CrossRef]
- Tang, M.; Chen, S.; Wu, J.; Jiang, Q.; Dorogan, V.G.; Benamara, M.; Mazur, Y.I.; Salamo, G.J.; Seeds, A.; Liu, H. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt. Express 2014, 22, 11528–11535. [Google Scholar] [CrossRef] [PubMed]
- Ledentsov, N.N.; Shchukin, V.A.; Grundmann, M.; Kirstaedter, N.; Böhrer, J.; Schmidt, O.; Bimberg, D.; Ustinov, V.M.; Egorov, A.Y.; Zhukov, A.E.; et al. Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. J. Phys. Rev. B 1996, 54, 8743–8750. [Google Scholar] [CrossRef]
- Liu, G.T.; Stintz, A.; Li, H.; Malloy, K.J.; Lester, L.F. Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well. Electron. Lett. 1999, 35, 1163–1165. [Google Scholar] [CrossRef] [Green Version]
- Deppe, D.G.; Shavritranuruk, K.; Ozgur, G.; Chen, H.; Freisem, S. Quantum dot laser diode with low threshold and low internal loss. Electron. Lett. 2009, 45, 54–56. [Google Scholar] [CrossRef]
- Mi, Z.; Yang, J.; Bhattacharya, P.; Huffaker, D.L. Self-organised quantum dots as dislocation filters: The case of GaAs-based lasers on silicon. Electron. Lett. 2006, 42, 121–123. [Google Scholar] [CrossRef]
- Chen, S.M.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.C.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, I.; et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Park, G.; Shchekin, O.B.; Csutak, S.; Huffaker, D.L.; Deppe, D.G. Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser. Appl. Phys. Lett. 1999, 75, 3267–3269. [Google Scholar] [CrossRef]
- Stintz, A.; Liu, G.T.; Li, H.; Lester, L.F.; Malloy, K.J. Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure. IEEE Photonics Technol. Let. 2000, 12, 591–593. [Google Scholar] [CrossRef]
- Huang, X.; Stintz, A.; Hains, C.; Liu, G.; Cheng, J.; Malloy, K. Efficient high-temperature CW lasing operation of oxide-confined long-wavelength InAs quantum dot lasers. Electron. Lett. 2000, 36, 41–42. [Google Scholar] [CrossRef]
- Liu, H.; Hopkinson, M.; Harrison, C.; Steer, M.; Frith, R.; Sellers, I.; Mowbray, D.; Skolnick, M. Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure. J. Appl. Phys. 2003, 93, 2931–2936. [Google Scholar] [CrossRef]
- Liu, H.; Sellers, I.; Gutierrez, M.; Groom, K.; Soong, W.; Hopkinson, M.; David, J.; Beanland, R.; Badcock, T.; Mowbray, D. Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures. J. Appl. Phys. 2004, 96, 1988–1992. [Google Scholar] [CrossRef]
- Huang, X.D.; Stintz, A.; Hains, C.P.; Liu, G.T.; Cheng, J.L.; Malloy, K.J. Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser. IEEE Photonics Technol. Lett. 2000, 12, 227–229. [Google Scholar] [CrossRef]
- Chen, H.; Zou, Z.; Shchekin, O.B.; Deppe, D.G. InAs quantum-dot lasers operating near 1.3 µm with high characteristic temperature for continuous-wave operation. Electron. Lett. 2000, 36, 1703–1704. [Google Scholar] [CrossRef]
- Wu., J.; Chen, S.M.; Seeds, A.; Liu, H.Y. Quantum dot optoelectronic devices: Lasers, photodetectors and solar cells. J. Phys. D Appl. Phys. 2015, 48, 363001. [Google Scholar] [CrossRef]
- Shchekin, O.B.; Deppe, D.G. 1.3 μm InAs quantum dot laser with To = 161 K from 0 to 80 °C. Appl. Phys. Lett. 2002, 80, 3277–3279. [Google Scholar] [CrossRef]
- Shchekin, O.B.; Deppe, D.G. Low-threshold high-T0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region. IEEE Photonics Technol. Lett. 2002, 14, 1231–1233. [Google Scholar] [CrossRef]
- Li, Q.Z.; Huang, Y.Q.; Ning, J.Q.; Jiang, C.; Wang, X.; Chen, H.M.; Li, X.; Zhang, R.Y.; Zhang, K.; Min, J.H.; et al. InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application. Nanoscale Res. Lett. 2018, 13, 267. [Google Scholar] [CrossRef]
- Badcock, T.J.; Liu, H.Y.; Groom, K.M.; Jin, C.Y.; Gutiérrez, M.; Hopkinson, M.; Mowbray, D.J.; Skolnick, M.S. 1.3 µm InAs/GaAs quantum-dot laser with low-threshold current density and negative characteristic temperature above room temperature. Electron. Lett. 2006, 42, 922–923. [Google Scholar] [CrossRef]
- Badcock, T.; Royce, R.; Mowbray, D.; Skolnick, M.; Liu, H.; Hopkinson, M.; Groom, K.; Jiang, Q. Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers. Appl. Phys. Lett. 2007, 90, 111102. [Google Scholar] [CrossRef]
- Jin, C.Y.; Badcock, T.J.; Liu, H.Y.; Groom, K.M.; Royce, R.J.; Mowbray, D.J.; Hopkinson, M. Observation and modeling of a room-temperature negative characteristic temperature 1.3-µm p-type modulation-doped quantum dot laser. IEEE J. Quantum Electron. 2006, 42, 1259–1265. [Google Scholar] [CrossRef]
- Sandall, I.C.; Smowton, P.M.; Thomson, J.D.; Baddock, T.; Mowbray, D.; Liu, H.; Hopkinson, M. Temperature dependence of threshold current in p-doped quantum dot lasers. Appl. Phys. Lett. 2006, 89, 151118. [Google Scholar] [CrossRef]
- Smowton, P.M.; Sandall, I.C.; Mowbray, D.J.; Liu, H.Y.; Hopkinson, M. Temperature-Dependent Gain and Threshold in P-Doped Quantum Dot Lasers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 1261–1266. [Google Scholar] [CrossRef]
- Ishida, M.; Sugawara, M.; Yamamoto, T.; Hatori, N.; Ebe, H.; Nakata, Y.; Arakawa, Y. Theoretical study on high-speed modulation of Fabry-Pérot and distributed-feedback quantum-dot lasers: K-factor-limited bandwidth and 10 Gbit/s eye diagrams. J. Appl. Phys. 2007, 101, 013108. [Google Scholar] [CrossRef]
- Sugawara, M.; Hatori, N.; Ishida, M.; Ebe, H.; Arakawa, Y.; Akiyama, T.; Otsubo, K.; Yamamoto, T.; Nakata, Y. Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers. J. Phys. D Appl. Phys. 2005, 38, 2126–2134. [Google Scholar] [CrossRef]
- Asryan, L.V.; Suris, R.A. Upper limit for the modulation bandwidth of a quantum dot laser. Appl. Phys. Lett. 2010, 96, 221112. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.T.; Marinelli, C.; Thompson, M.G.; Wonfor, A.; Silver, M.; Sellin, R.L.; Penty, R.V.; White, I.H.; Kuntz, M.; Lämmlin, M.; et al. High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers. IEEE Photonics Technol. Lett. 2004, 16, 1415–1417. [Google Scholar] [CrossRef]
- Dagens, B.; Martinez, A.; Provost, J.G.; Make, D.; Gouezigou, O.L.; Ferlazzo, L.; Merghem, K.; Lemaître, A.; Ramdane, A.; Thedrez, B. High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-/spl mu/m transmission with a directly modulated quantum dot laser. IEEE Photonics Technol. Lett. 2006, 18, 589–591. [Google Scholar] [CrossRef]
- Kuntz, M.; Fiol, G.; Lämmlin, M.; Schubert, C.; Kovsh, A.R.; Jacob, A.; Umbach, A.; Bimberg, D. 10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers. Electron. Lett. 2005, 41, 244–245. [Google Scholar] [CrossRef]
- Otsubo, K.; Hatori, N.; Ishida, M.; Okumura, S.; Akiyama, T.; Nakata, Y.; Ebe, H.; Sugawara, M.; Arakawa, Y. Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments. Jpn. J. Appl. Phys. 2004, 43, L1124–L1126. [Google Scholar] [CrossRef]
- Ishida, M.; Hatori, N.; Otsubo, K.; Yamamoto, T.; Nakata, Y.; Ebe, H.; Sugawara, M.; Arakawa, Y. Low-driving-current temperature-sTable 10 Gbit/s operation of p-doped 1.3 µm quantum dot lasers between 20 and 90 °C. Electron. Lett. 2007, 43, 219–221. [Google Scholar] [CrossRef]
- Gerschutz, F.; Fischer, M.; Koeth, J.; Chacinski, M.; Schatz, R.; Kjebon, O.; Kovsh, A.; Krestnikov, I.; Forchel, A. Temperature insensitive 1.3 µm InGaAs/GaAs quantum dot distributed feedback lasers for 10 Gbit/s transmission over 21 km. Electron. Lett. 2006, 42, 1457–1458. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ishida, M.; Maeda, Y.; Akiyama, T.; Yamamoto, T.; Song, H.Z.; Yamaguchi, M.; Nakata, Y.; Nishi, K.; Sugawara, M.; et al. High-speed and temperature-insensitive operation in 1.3-µm InAs/GaAs high-density quantum dot lasers. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 22–26 March 2009. [Google Scholar]
- Zhukov, A.E.; Moiseev, E.I.; Kryzhanovskaya, N.N.; Zubov, F.I.; Mozharov, A.M.; Kalyuzhnyi, N.A.; Mintairov, S.A.; Kulagina, M.M.; Blokhin, S.A.; Maximov, M.V. Energy consumption for high-frequency switching of a quantum-dot microdisk laser. Tech. Phys. Lett. 2019, 45, 847–849. [Google Scholar] [CrossRef]
- Wan, Y.; Xiang, C.; Guo, J.; Koscica, R.; Kennedy, M.J.; Selvidge, J.; Zhang, Z.; Chang, L.; Xie, W.; Huang, D.; et al. High speed evanescent quantum-dot lasers on Si. Laser Photonics Rev. 2021, 15, 2100057. [Google Scholar] [CrossRef]
- O’Brien, D.; Hegarty, S.P.; Huyet., G.; McInerney, J.G.; Kettler, T.; Laemmlin, M.; Bimberg, D.; Ustinov, V.M.; Zhukov, A.E.; Mikhrin, S.S.; et al. Feedback sensitivity of 1.3 µm InAs/GaAs quantum dot lasers. Electron. Lett. 2003, 39, 1819–1820. [Google Scholar] [CrossRef]
- Huang, H.; Duan, J.; Jung, D.; Liu, A.Y.; Zhang, Z.; Norman, J.; Bowers, J.E.; Grillot, F. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B 2018, 35, 2780–2787. [Google Scholar] [CrossRef]
- Su, H.; Zhang, L.; Gray, A.L.; Wang, R.; Newell, T.C.; Malloy, K.J.; Lester, L.F. High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers. IEEE Photonics Technol. Lett. 2003, 15, 1504–1506. [Google Scholar] [CrossRef] [Green Version]
- Mizutani, K.; Yashiki, K.; Kurihara, M.; Suzuki, Y.; Hagihara, Y.; Hatori, N.; Shimizu, T.; Urino, Y.; Nakamura, T.; Kurata, K. Isolator free optical I/O core transmitter by using quantum dot laser. In Proceedings of the IEEE 12th International Conference on Group IV Photonics, Vancouver, BC, Canada, 26–28 August 2015; pp. 177–178. [Google Scholar]
- Huang, H.; Duan, J.; Dong, B.; Norman, J.; Jung, D.; Bowers, J.E.; Grillot, F. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photon. 2020, 5, 016103. [Google Scholar] [CrossRef] [Green Version]
- Nishi, K.; Takemasa, K.; Sugawara, M.; Arakawa, Y. Development of Quantum Dot Lasers for Data-Com and Silicon Photonics Applications. J. Sel. Top. Quantum Electron. 2017, 23, 1901007. [Google Scholar] [CrossRef]
- Arsenijević, D.; Schliwa, A.; Schmeckebier, H.; Stubenrauch, M.; Spiegelberg, M.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G. Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers. Appl. Phys. Lett. 2014, 104, 181101. [Google Scholar] [CrossRef]
- Asghari, M.; Krishnamoorthy, A.V. Energy-efficient communication. Nat. Photonics 2011, 5, 268–270. [Google Scholar] [CrossRef]
- Rickman, A. The commercialization of silicon photonics. Nat. Photonics 2014, 8, 579–582. [Google Scholar] [CrossRef]
- Michel, J.; Liu, J.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.; Thomson, D. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, K.; Watanabe, K.; Arakawa, Y. III-V/Si hybrid photonic devices by direct fusion bonding. Sci. Rep. 2012, 2, 349. [Google Scholar] [CrossRef]
- Wang, T.; Liu, H.; Lee, A.; Pozzi, F.; Seeds, A. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express 2011, 19, 11381–11386. [Google Scholar] [CrossRef]
- Lee, A.; Jiang, Q.; Tang, M.; Seeds, A.; Liu, H. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt. Express 2012, 20, 22181–22187. [Google Scholar] [CrossRef]
- Liu, A.Y.; Zhang, C.; Norman, J.; Snyder, A.; Lubyshev, D.; Fastenau, J.M.; Liu, A.W.K.; Gossard, A.C.; Bowers, J.E. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl. Phys. Lett. 2014, 104, 041104. [Google Scholar] [CrossRef]
- Wang, Z.C.; Tian, B.; Pantouvaki, M.; Guo, W.M.; Absil, P.; Campenhout, J.V.; Merckling, C.; Thourhout, D.V. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics 2015, 9, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.J.; Cao, V.; Liao, M.Y.; Lu, Y.; Liu, Z.Z.; Tang, M.C.; Chen, S.M.; Seeds, A.; Liu, H.Y. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond. 2019, 40, 101302. [Google Scholar] [CrossRef]
- Liu, H.Y.; Wang, T.; Jiang, Q.; Hogg, R.; Tutu, F.; Pozzi, F.; Seeds, A. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat. Photonics 2011, 5, 416–419. [Google Scholar] [CrossRef]
- Mi, Z.; Yang, J.; Bhattacharya, P.; Qin, G.Q.; Ma, Z.Q. High-Performance Quantum Dot Lasers and Integrated Optoelectronics on Si. Proc. IEEE 2009, 97, 1239–1248. [Google Scholar] [CrossRef]
- Stubenrauch, M.; Stracke, G.; Arsenijević, D.; Strittmatter, A.; Bimberg, D. 15 Gb/s index-coupled distributed-feedback lasers based on 1.3 μm InGaAs quantum dots. Appl. Phys. Lett. 2014, 105, 011103. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Yu, Y.; Zhou, L.; Liu, L.; Yang, C.C.; Liao, M.Y.; Tang, M.C.; Liu, Z.Z.; Wu, J.; et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optical 2018, 5, 528–533. [Google Scholar] [CrossRef]
- Bimberg, D.; Ledentsov, N.N.; Lott, J.A. Quantum-Dot Vertical-Cavity Surface-Emitting Lasers. MRS Bull. 2002, 27, 531–537. [Google Scholar] [CrossRef]
- Schur, R.; Sogawa, F.; Nishioka, M.; Ishida, S.; Arakawa, Y. Vertical Microcavity Lasers with InGaAs/GaAs Quantum Dots Formed by Spinodal Phase Separation. Jpn. J. Appl. Phys. 1997, 36, L357–L360. [Google Scholar] [CrossRef]
- Saito, H.; Nishi, K.; Ogura, I.; Sugou, S.; Sugimoto, Y. Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser. Appl. Phys. Lett. 1996, 69, 3140–3142. [Google Scholar] [CrossRef]
- Lott, J.A.; Ledentsov, N.N.; Ustinov, V.M.; Egorov, Y.A.; Zhukov, A.E.; Kop’ev, P.S.; Alferov, Z.I.; Bimberg, D. Vertical cavity lasers based on vertically coupled quantum dots. Electron. Lett. 1997, 33, 1150–1151. [Google Scholar] [CrossRef]
- Ledentsov, N.; Chorchos, L.; Makarov, O.; Kropp, J.R.; Shchukin, V.A.; Kalosha, V.P.; Turkiewicz, J.P.; Cherkashin, N.; Ledentsov, N.N. Quantum-dot oxide-confined 850-nm VCSELs with extreme temperature stability operating at 25 Gbit/s up to 180 °C. In Proceedings of the SPIE 11300 Vertical-Cavity Surface-Emitting Lasers XXIV, San Francisco, CA, USA, 24 February 2020. [Google Scholar]
- Hopfer, F.; Mutig, A.; Fiol, G.; Kuntz, M.; Shchukin, V.A.; Haisler, V.A.; Warming, T.; Stock, E.; Mikhrin, S.S.; Krestnikov, I.L.; et al. 20 Gb/s 85 °C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 1302–1308. [Google Scholar] [CrossRef]
- Li, H.; Wolf, P.; Moser, P.; Larisch, G.; Lott, J.A.; Bimberg, D. Temperature-STable 980-nm VCSELs for 35-Gb/s Operation at 85 °C With 139-fJ/bit Dissipated Heat. IEEE Photonics Technol. Lett. 2014, 26, 2349–2352. [Google Scholar] [CrossRef]
- Lott, J.A.; Ledentsov, N.N.; Ustinov, V.M.; Maleev, N.A.; Zhukov, A.E.; Kovsh, A.R.; Maximov, M.V.; Volovik, B.V.; Alferov, Z.I.; Bimberg, D. InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm. Electron. Lett. 2000, 36, 1384–1385. [Google Scholar] [CrossRef]
- Xu, D.W.; Tong, C.Z.; Yoon, S.F.; Fan, W.J.; Zhang, D.H.; Wasiak, M.; Piskorski, Ł.; Gutowski, K.; Sarzała, R.P.; Nakwaski, W. Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3 µm optical-fibre communication. Semicond. Sci. Technol. 2009, 24, 055003. [Google Scholar] [CrossRef]
- He, X.Y.; Liu, Z.B.; Wang, D.N. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating. Opt. Lett. 2012, 37, 2394–2396. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.W.; Li, W.X.; Yan, M.; Zhou, H.; Zhou, Y.; Zeng, H.P. Up to 85-W 1030-nm Fiber Laser Synchronized to 800- and 1550-nm Femtosecond Lasers at 79.5 MHz. IEEE Photonics Technol. Lett. 2011, 23, 1558–1560. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, X.T.; Wang, J.; Li, X.; Chen, J.P. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express 2015, 23, 11453–11461. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.H.; Jiang, C.; Brown, C.T.A.; Ning, J.Q.; Zhang, K.; Yu, Q.; Ge, X.T.; Wang, Q.J.; Zhang, Z.Y. Photon-generated carrier transfer process from graphene to quantum dots: Optical evidences and ultrafast photonics applications. NPJ 2D Mater. Appl. 2020, 4, 27. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.J.; Jiang, C.; Guo, Y.X.; Ge, X.T.; Chen, H.M.; Ning, J.Q.; Zheng, C.C.; Peng, Y.; Li, X.H.; et al. InAs/GaAs quantum dot semiconductor saturable absorber for controllable dual-wavelength passively Q-switched fiber laser. Opt. Express 2019, 27, 20649–20658. [Google Scholar] [CrossRef]
- Borri, P.; Schneider, S.; Langbein, W.; Bimberg, D. Ultrafast carrier dynamics in InGaAs quantum dot materials and devices. J. Opt. A Pure Appl. Opt. 2006, 8, S33–S46. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Wang, H.P.; Wang, S.; Qin, L.; Liu, J.; Zhang, Z.Y. Tunable graphene/quantum-dot van der Waals heterostructures saturable absorber plane array by two steps femtosecond and nanosecond laser post-processing. Adv. Photonics Res. 2021, 5, 593–596. [Google Scholar]
- Resan, B.; Kurmulis, S.; Zhang, Z.Y.; Oehler, A.E.H.; Markovic, V.; Mangold, M.; Südmeyer, T.; Keller, U.; Hogg, R.A.; Weingarten, K.J. 10 GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror. Appl. Opt. 2016, 55, 3776–3780. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Ning, J.Q.; Li, X.H.; Wang, X.; Zhang, Z.Y. Development of 1550 nm InAs/GaAs quantum dot saturable absorber mirror with a short period superlattice capping structure towards femtosecond fiber laser applications. Nanoscale Res. Lett. 2019, 13, 267. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.; Jiang, C.; Wang, X.; Chen, H.; Wang, H.; Qin, L.; Zhang, Z. Recent Developments of Quantum Dot Materials for High Speed and Ultrafast Lasers. Nanomaterials 2022, 12, 1058. https://doi.org/10.3390/nano12071058
Yao Z, Jiang C, Wang X, Chen H, Wang H, Qin L, Zhang Z. Recent Developments of Quantum Dot Materials for High Speed and Ultrafast Lasers. Nanomaterials. 2022; 12(7):1058. https://doi.org/10.3390/nano12071058
Chicago/Turabian StyleYao, Zhonghui, Cheng Jiang, Xu Wang, Hongmei Chen, Hongpei Wang, Liang Qin, and Ziyang Zhang. 2022. "Recent Developments of Quantum Dot Materials for High Speed and Ultrafast Lasers" Nanomaterials 12, no. 7: 1058. https://doi.org/10.3390/nano12071058
APA StyleYao, Z., Jiang, C., Wang, X., Chen, H., Wang, H., Qin, L., & Zhang, Z. (2022). Recent Developments of Quantum Dot Materials for High Speed and Ultrafast Lasers. Nanomaterials, 12(7), 1058. https://doi.org/10.3390/nano12071058