Chemoresistive Sensors for Cellular Type Discrimination Based on Their Exhalations
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Sensor Working Principle and the Sol-Gel Technique
- The hydrolysis of the precursor (as silicon or metal alkoxides) in water or alcohol solution (named “sol”, as solution, in Figure 1b); usually some other chemicals (as acids, etc.) are added to the solution to promote the sol process that foresee the formation of a colloidal suspension.
- The condensation of the MOX molecules (“Aggregation”, Figure 1b), occurs when the water or alcohol are removed and the MOX bridging takes place. This forms a colloidal and viscous network, but in a liquid phase (“GEL”, Figure 1b); the alkoxide precursor and pH of the solution are the two parameters that mainly influence the colloidal particles size and cross-linking.
- The aging process (up to a couple of days), during which several changes in the gel structure and properties occur as polycondensation, lead to an increase in thickness of the colloidal particles and to the reduction of their porosity.
- The last step is the drying and calcination: the GEL is dried first (at about 100 °C), and then calcinated at higher temperatures (at about 400–800 °C) to completely remove the residuals of solvents and of other chemical additives. In this process, the temperature and the relative humidity greatly influence the quality of the final MOX powder.
2.2. The Sensor Assembly
2.3. The Sensor Array, the Response, and the Device
- ST25, based on tin oxides and titanium (25%) and gold nanoparticles (1%);
- W11, based on tungsten oxide;
- STN, based on tin, titanium, and niobium oxides;
- TiTaV, based on titanium, tantalum and vanadium oxides.
2.4. Cell Types and Sample Preparation
- A549, explant culture of lung carcinomatous tissue;
- CACO-2, human colorectal adenocarcinoma cell line;
- CHO, epithelial cell line derived from the ovary of the Chinese hamster;
- HEK293, specific immortalized cell line originally derived from human embryonic kidney;
- RKO, human colorectal cancer cells.
3. Results and Discussion
3.1. Sensor Responses to the Culture Media
3.2. Sensor Responses to RKO Cell Line
3.3. Sensor Responses to HEK-293 Cell Line
3.4. Sensor Responses to CHO and A549 Cell Lines
3.5. Sensor Responses to CACO-2 and Fibroblast Cell Lines
3.6. Sensor Responses as Fingerprint for Cell Typing
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Cancer Society: Information and Resources about for Cancer: Breast, Colon, Lung, Prostate, Skin. Available online: https://www.cancer.org/ (accessed on 1 February 2022).
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Szachowicz-Petelska, B.; Dobrzyńska, I.; Sulkowski, S.; Figaszewski, Z.A. Characterization of the Cell Membrane During Cancer Transformation. J. Environ. Biol. 2010, 31, 845–850. [Google Scholar]
- Locasale, J.W.; Lewis, C.C. Altered metabolism in cancer. BMC Biol. 2010, 8, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Woollam, M.; Teli, M.; Angarita-Rivera, P.; Liu, S.; Siegel, A.P.; Yokota, H.; Agarwal, M. Detection of volatile organic compounds (VOCs) in urine via gas chromatography-mass spectrometry QTOF to differentiate between localized and metastatic models of breast cancer. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chandrapalan, S.; Arasaradnam, R.P. Urine as a biological modality for colorectal cancer detection. Expert Rev. Mol. Diagn. 2020, 20, 489–496. [Google Scholar] [CrossRef]
- Hanai, Y.; Shimono, K.; Oka, H.; Baba, Y.; Yamazaki, K.; Beauchamp, G.K. Analysis of volatile organic compounds released from human lung cancer cells and from the urine of tumor-bearing mice. Cancer Cell Int. 2012, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Speiser, D.; Schneider, A.; Staeck, O.; Freitag, C.; Lanowska, M.; Mangler, M. Volatile organic compounds (VOCs) in exhaled breath of patients with breast cancer in a clinical setting. Ginekol. Pol. 2012, 83, 730–736. [Google Scholar]
- Wang, C.; Ke, C.; Wang, X.; Chi, C.; Guo, L.; Luo, S.; Li, E. Non-invasive detection of colorectal cancer by analysis of exhaled breath. Anal. Bioanal. Chem. 2014, 406, 4757–4763. [Google Scholar] [CrossRef]
- Altomare, D.F.; di Lena, M. Exhaled volatile organic compounds identify patients with colorectal cancer. Br. J. Surg. 2013, 100, 144–150. [Google Scholar] [CrossRef]
- Di Lena, M.; Porcelli, F.; Altomare, D.F. Volatile organic compounds as new biomarkers for colorectal cancer: A review. Int. J. Colorectal. Dis. 2016, 18, 654–663. [Google Scholar] [CrossRef]
- Markar, S.R.; Chin, S.T.; Romano, A.; Wiggins, T.; Antonowicz, S.; Paraskeva, P.; Hanna, G.B. Breath volatile organic compound profiling of colorectal cancer using selected ion flow-tube mass spectrometry. Ann. Surg. 2019, 269, 903–910. [Google Scholar] [CrossRef]
- Filipiak, W.; Filipiak, A.; Sponring, A.; Schmid, A.; Zelger, T.; Ager, B.; Amann, A. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J. Breath Res. 2014, 8, 027111. [Google Scholar] [CrossRef]
- Peng, G.; Hakim, M. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef]
- Haick, H.; Broza, Y.Y.; Mochalsky, P.; Ruzsanyi, V.; Amann, A. Assessment, origin and implementation of breath volatile cancer markers. Chem. Soc. Rev. 2014, 43, 1423–1449. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Qiu, Y.; Zou, X.; Chen, T. Metabonomics identifies serum metabolite markers of colorectal cancer. J. Proteome Res. 2013, 12, 3000–3009. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, P.; Lian, A.; Sun, B.; Li, E. Blood volatile compounds as biomarkers for colorectal cancer. Cancer Biol. Ther. 2014, 15, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Probert, C.S.J.; Ahmed, I.; Khalid, T. Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointes and Liver Diseases. J. Gatrointestin. Liver Dis. 2009, 18, 337–343. [Google Scholar]
- De Meij, T.G.; Ben Larbi, I.; Van Der Schee, M.P. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile biomarker analysis: Proof of principle study. Int. J. Cancer 2014, 134, 1132–1138. [Google Scholar] [CrossRef]
- Ortiz-Casas, B.; Galdámez-Martínez, A.; Gutiérrez-Flores, J.; Ibañez, A.B.; Panda, P.K.; Santana, G.; de la Vega, H.A.; Suar, M.; Rodelo, C.G.; Kaushik, A.; et al. Bio-Acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Materials Today. Mater. Today 2021, 50, 533–569. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Q.; Du, X.; Liu, M. Application of electrochemical biosensors in tumor cell detection. Thorac. Cancer 2020, 11, 840–850. [Google Scholar] [CrossRef]
- Sadighbayan, D.; Sadighbayan, K.; Tohid-Kia, M.R.; Khosroushahi, A.Y.; Hasanzadeh, M. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. TrAC 2019, 118, 73–88. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Mohammadi, S.; Salimi, A. Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. TrAC 2019, 115, 83–99. [Google Scholar] [CrossRef]
- Palchetti, I. Affinity biosensors for tumor-marker analysis. Bioanalysis 2014, 6, 3417–3435. [Google Scholar] [CrossRef]
- Malagù, C.; Fabbri, B.; Gherardi, S.; Giberti, A.; Guidi, V.; Landini, N.; Zonta, G. Chemoresistive gas sensors for detection of colorectal cancer biomarkers. Sensors 2014, 14, 18982–18992. [Google Scholar] [CrossRef] [Green Version]
- Zonta, G.; Anania, G.; Fabbri, B.; Gaiardo, A.; Gherardi, S.; Giberti, A.; Guidi, V.; Landini, N.; Malagù, C. Detection of colorectal cancer biomarkers in the presence of interfering gases. Sens. Actuators B Chem. 2015, 218, 289–295. [Google Scholar] [CrossRef]
- Zonta, G.; Anania, G.; Fabbri, B.; Gaiardo, A.; Gherardi, S.; Giberti, A.; Landini, N.; Malagù, C.; Scagliarini, L.; Guidi, V. Preventive screening of colorectal cancer with a device based on chemoresistive sensors. Sens. Actuators B Chem. 2016, 238, 1098–1101. [Google Scholar] [CrossRef]
- Zonta, G.; Anania, G.; Feo, C.; Gaiardo, A.; Gherardi, S.; Giberti, A.; Guidi, V.; Landini, N.; Palmonari, C.; Ricci, L.; et al. Use of gas sensors and FOBT for the early detection of colorectal cancer. Sens. Actuators B Chem. 2018, 262, 884–891. [Google Scholar] [CrossRef]
- Zonta, G.; Malagù, C.; Gherardi, S.; Giberti, A.; Pezzoli, A.; De Togni, A.; Palmonari, C. Clinical Validation Results of an Innovative Non-Invasive Device for Colorectal Cancer Preventive Screening through Fecal Exhalation Analysis. Cancers 2020, 12, 1471. [Google Scholar] [CrossRef]
- Zonta, G.; Anania, G.; Astolfi, M.; Feo, C.; Gaiardo, A.; Gherardi, S.; Giberti, A.; Guidi, V.; Landini, N.; Palmonari, C.; et al. Chemoresistive sensors for colorectal cancer preventive screening through fecal odor: Double-blind approach. Sens. Actuators B Chem. 2019, 301, 127062. [Google Scholar] [CrossRef]
- Astolfi, M.; Rispoli, G.; Anania, G.; Artioli, E.; Nevoso, V.; Zonta, G.; Malagù, C. Tin, Titanium, Tantalum, Vanadium and Niobium Oxide Based Sensors to Detect Colorectal Cancer Exhalations in Blood Samples. Molecules 2021, 26, 466. [Google Scholar] [CrossRef]
- Astolfi, M.; Rispoli, G.; Anania, G.; Nevoso, V.; Artioli, E.; Landini, N.; Benedusi, M.; Melloni, E.; Secchiero, P.; Tisato, V.; et al. Colorectal Cancer Study with Nanostructured Sensors: Tumor Marker Screening of Patient Biopsies. Nanomaterials 2020, 10, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landini, N.; Anania, G.; Astolfi, M.; Fabbri, B.; Guidi, V.; Rispoli, G.; Valt, M.; Zonta, G.; Malagù, C. Nanostructured Chemoresistive Sensors for Oncological Screening and Tumor Markers Tracking: Single Sensor Approach Applications on Human Blood and Cell Samples. Sensors 2020, 20, 1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zonta, G.; Astolfi, M.; Casotti, D.; Cruciani, G.; Fabbri, B.; Gaiardo, A.; Gherardi, S.; Guidi, V.; Landini, N.; Valt, M.; et al. Reproducibility tests with zinc oxide thick-film sensors. Ceram. 2020, 46, 6847–6855. [Google Scholar] [CrossRef]
- Gherardi, S.; Zonta, G.; Astolfi, M.; Malagù, C. Humidity effects on SnO2 and (SnTiNb)O2 sensors response to CO and two-dimensional calibration treatment. Mater. Sci. Eng. B 2021, 265, 115013. [Google Scholar] [CrossRef]
- Liu, M.; Li, Y.; Wang, G.; Guo, N.; Liu, D.; Li, D.; Wang, C. Release of volatile organic compounds (VOCs) from colorectal cancer cell line LS174T. Anal. Biochem. 2019, 581, 113340. [Google Scholar] [CrossRef]
- Sponring, A.; Filipiak, W.; Ager, C.; Schubert, J.; Miekisch, W.; Amann, A.; Troppmair, J. Analysis of volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells. Cancer Biomark. 2010, 7, 153–161. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, H.; Ong, C.N.; Patra, A.; Lu, Y.; Lim, C.T.; Venkatesan, T. Detection of lung cancer: Concomitant volatile organic compounds and metabolomic profiling of six cancer cell lines of different histological origins. ACS Omega 2018, 3, 5131–5140. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Wang, D.; Yu, K.; Wang, L.; Zou, Y.; Ying, K. The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. Cancer Biomark. 2012, 11, 129–137. [Google Scholar] [CrossRef]
- Zhang, Z.; Yates, J.T., Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef]
- Bârsan, N.; Hübner, M.; Weimar, U. Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds. Sens. Actuators B Chem. 2011, 157, 510–517. [Google Scholar] [CrossRef]
- Traversa, E.; Di Vona, M.L.; Licoccia, S.; Sacerdoti, M.; Carotta, M.C.; Crema, L.; Martinelli, G. Sol-gel processed TiO2-based nano-sized powders for use in thick-film gas sensors for atmospheric pollutant monitoring. J. Sol-Gel Sci. Technol. 2001, 22, 167–179. [Google Scholar] [CrossRef]
- Parashar, M.; Shukla, V.K.; Singh, R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 2020, 31, 3729–3749. [Google Scholar] [CrossRef]
- Judeinstein, P.; Livage, J. Sol–gel synthesis of WO3 thin films. J. Mater. Chem. 1991, 1, 621–627. [Google Scholar] [CrossRef]
- Dutta, M.; Mridha, S.; Basak, D. Effect of sol concentration on the properties of ZnO thin films prepared by sol–gel technique. Appl. Surf. Sci. 2008, 254, 2743–2747. [Google Scholar] [CrossRef]
- Malagù, C.; Gherardi, S.; Zonta, G.; Landini, N.; Giberti, A.; Fabbri, B.; Gaiardo, A.; Anania, G.; Rispoli, G.; Scagliarini, L. Combinazione di Materiali Semiconduttori Nanoparticolati per uso nel Distinguere Cellule Normali da Cellule Tumorali 2015. Italian Patent 102015000057717, 10 February 2015. [Google Scholar]
- Sticozzi, C.; Belmonte, G.; Pecorelli, A.; Cervellati, F.; Leoncini, S.; Signorini, C.; Ciccoli, L.; De Felice, C.; Hayek, J.; Valacchi, G. Scavenger receptor B1 post-translational modifications in Rett syndrome. FEBS Lett. 2013, 587, 2199–2204. [Google Scholar] [CrossRef] [Green Version]
- Pavel, M.; Renna, M.; Park, S.J.; Menzies, F.M.; Ricketts, T.; Füllgrabe, J.; Ashkenazi, A.; Frake, R.A.; Lombarte, A.C.; Bento, C.F.; et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat. Commun. 2018, 9, 2961. [Google Scholar] [CrossRef] [Green Version]
- Tubiana, M. Tumor cell proliferation kinetics and tumor growth rate. Acta Oncol. 1989, 28, 113–121. [Google Scholar] [CrossRef]
- Guardamagna, I.; Lonati, L.; Savio, M.; Stivala, L.A.; Ottolenghi, A.; Baiocco, G. An Integrated Analysis of the Response of Colorectal Adenocarcinoma Caco-2 Cells to X-Ray Exposure. Front. Oncol. 2021, 3, 688919. [Google Scholar] [CrossRef]
- Discover How In Vitro Caco-2 Kits Help You Evaluate Novel Therapeutic Molecules. Available online: https://readycell.com/in-vitro-caco-2-kits-evaluate-novel-molecules (accessed on 1 February 2022).
- Boedtkjer, E.; Pedersen, S.F. The Acidic Tumor Microenvironment as a Driver of Cancer. Annu. Rev. Physiol. 2020, 82, 103–126. [Google Scholar] [CrossRef] [Green Version]
Cell Type | ST25 | STN | TiTaV |
---|---|---|---|
Fibroblasts | 1.11 | 0.78 | 1.17 |
CACO-2 | 1.03 | 1.00 | 1.14 |
RKO | 1.14 | 1.29 | 1.01 |
HEK-293 | 1.12 | 1.12 | 1.15 |
CHO | 1.08 | 1.33 | 1.20 |
A549 | 1.35 | 1.06 | 1.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astolfi, M.; Rispoli, G.; Benedusi, M.; Zonta, G.; Landini, N.; Valacchi, G.; Malagù, C. Chemoresistive Sensors for Cellular Type Discrimination Based on Their Exhalations. Nanomaterials 2022, 12, 1111. https://doi.org/10.3390/nano12071111
Astolfi M, Rispoli G, Benedusi M, Zonta G, Landini N, Valacchi G, Malagù C. Chemoresistive Sensors for Cellular Type Discrimination Based on Their Exhalations. Nanomaterials. 2022; 12(7):1111. https://doi.org/10.3390/nano12071111
Chicago/Turabian StyleAstolfi, Michele, Giorgio Rispoli, Mascia Benedusi, Giulia Zonta, Nicolò Landini, Giuseppe Valacchi, and Cesare Malagù. 2022. "Chemoresistive Sensors for Cellular Type Discrimination Based on Their Exhalations" Nanomaterials 12, no. 7: 1111. https://doi.org/10.3390/nano12071111
APA StyleAstolfi, M., Rispoli, G., Benedusi, M., Zonta, G., Landini, N., Valacchi, G., & Malagù, C. (2022). Chemoresistive Sensors for Cellular Type Discrimination Based on Their Exhalations. Nanomaterials, 12(7), 1111. https://doi.org/10.3390/nano12071111