Effect of Mg Doping on the Physical Properties of Fe2O3 Thin Films for Photocatalytic Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Undoped and Mg-Doped Fe2O3 Thin Films
2.2. Photocatalytic Activity
2.3. Characterization
3. Results and Discussion
3.1. Structural Properties
3.2. Rietveld Analysis
3.3. Morphological Properties
3.4. Optical Properties
3.5. Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Belver, C.; Bedia, J.; Gómez-Avilés, A.; Peñas-Garzón, M.; Rodriguez, J.J. Chapter 22—Semiconductor Photocatalysis for Water Purification. In Nanoscale Materials in Water Purification; Thomas, S., Pasquini, D., Leu, S.-Y., Gopakumar, D.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 581–651. [Google Scholar]
- Dias, E.M.; Petit, C. Towards the Use of Metal–Organic Frameworks for Water Reuse: A Review of the Recent Advances in the Field of Organic Pollutants Removal and Degradation and the Next Steps in the Field. J. Mater. Chem. A 2015, 3, 22484–22506. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, F.; He, R.; Wang, Y.; Tang, N. Chapter 24–Semiconductor Photocatalysis for Water Purification. In Nanoscale Materials in Water Purification; Thomas, S., Pasquini, D., Leu, S.-Y., Gopakumar, D.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 689–705. [Google Scholar]
- Zargazi, M.; Entezari, M.H. Anodic Electrophoretic Deposition of Bi2WO6 Thin Film: High Photocatalytic Activity for Degradation of a Binary Mixture. Appl. Catal. Environ. 2019, 242, 507–517. [Google Scholar] [CrossRef]
- Barroso, M.; Cowan, A.J.; Pendlebury, S.R.; Grätzel, M.; Klug, D.R.; Durrant, J.R. The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of α-Fe2O3 Toward Water Oxidation. J. Am. Chem. Soc. 2011, 133, 14868–14871. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Chun, D.-M. A-Fe2O3 as a Photocatalytic Material: A Review. Appl. Catal. Gen. 2015, 498, 126–141. [Google Scholar] [CrossRef]
- Ben Ayed, R.; Ajili, M.; Turki, N.K. Physical Properties and Rietveld Analysis of Fe2O3 Thin Films Prepared by Spray Pyrolysis: Effect of Precursor Concentration. Phys. B Condens. Matter 2019, 563, 30–35. [Google Scholar] [CrossRef]
- Cesar, I.; Kay, A.; Gonzalez Martinez, J.A.; Grätzel, M. Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping. J. Am. Chem. Soc. 2006, 128, 4582–4583. [Google Scholar] [CrossRef]
- Liu, H.Y.; Shon, H.K.; Sun, X.; Vigneswaran, S.; Nan, H. Preparation and Characterization of Visible Light Responsive Fe2O3-TiO2 Composites. Appl. Surf. Sci. 2011, 257, 5813–5819. [Google Scholar] [CrossRef]
- Ounnar, A.; Bouzaza, A.; Favier, L.; Bentahar, F. Macrolide Antibiotics Removal Using a Circulating TiO2-Coated Paper Photoreactor: Parametric Study and Hydrodynamic Flow Characterization. Water Sci. Technol. 2016, 73, 2627–2637. [Google Scholar] [CrossRef]
- Baradaran, M.; Ghodsi, F.E.; Bittencourt, C.; Llobet, E. The Role of al Concentration on Improving the Photocatalytic Performance of Nanostructured ZnO/ZnO:Al/ZnO Multilayer Thin Films. J. Alloys Compd. 2019, 788, 289–301. [Google Scholar] [CrossRef]
- Ali, D.; Butt, M.Z.; Muneer, I.; Farrukh, M.A.; Aftab, M.; Saleem, M.; Bashir, F.; Khan, A.U. Synthesis and Characterization of Sol-Gel Derived La and Sm Doped ZnO Thin Films: A Solar Light Photo Catalyst for Methylene Blue. Thin Solid Film. 2019, 679, 86–98. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, G.; Xian, F.; Su, J. The Morphological Evolution of ZnO Thin Films by Sn Ions Doping and Its Influence on the Surface Energy and Photocatalytic Activity. Mater. Chem. Phys. 2019, 229, 215–225. [Google Scholar] [CrossRef]
- Mahadik, M.; Shinde, S.; Mohite, V.; Kumbhar, S.; Rajpure, K.; Annasaheb Moholkar, A.; Kim, J.; Bhosale, C. Photoelectrocatalytic Oxidation of Rhodamine B with Sprayed α-Fe2O3 Photocatalyst. Mater. Express 2013, 3, 247–255. [Google Scholar] [CrossRef]
- Jiamprasertboon, A.; Kafizas, A.; Sachs, M.; Ling, M.; Alotaibi, A.M.; Lu, Y.; Siritanon, T.; Parkin, I.P.; Carmalt, C.J. Heterojunction α- Fe2O3/ZnO Films with Enhanced Photocatalytic Properties Grown by Aerosol-Assisted Chemical Vapour Deposition. Chem. Eur. J. 2019, 25, 11337–11345. [Google Scholar] [PubMed]
- Sumna, S.; Chahal, S.; Kumar, A.; Kumar, P. Zn Doped α- Fe2O3: An Efficient Material for UV Driven Photocatalysis and Electrical Conductivity. Crystals 2020, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, G.K.; Parida, K.M. Fabrication, Growth Mechanism, and Characterization of α-Fe2O3 Nanorods. ACS Appl. Mater. Interfaces 2011, 3, 317–323. [Google Scholar] [CrossRef]
- Satheesh, R.; Vignesh, K.; Suganthi, A.; Rajarajan, M. Visible Light Responsive Photocatalytic Applications of Transition Metal (M = Cu, Ni and Co) Doped α- Fe2O3 Nanoparticles. Biochem. Pharmacol. 2014, 2, 1956–1968. [Google Scholar]
- Joseph, J.A.; Nair, S.B.; Mary, S.A.; John, S.S.; Shaji, S.; Philip, R.R. Influence of Magnesium Doping on the Photocatalytic and Antibacterial Properties of Hematite Nanostructures. Phys. Status Solidi 2021, 259, 2100437. [Google Scholar] [CrossRef]
- Watanabe, A.; Kozuka, H. Photoanodic Properties of Sol−Gel-Derived Fe2O3 Thin Films Containing Dispersed Gold and Silver Particles. J. Phys. Chem. B 2003, 107, 12713–12720. [Google Scholar] [CrossRef]
- Cao, C.; Hu, C.; Shen, W.; Wang, S.; Song, S.; Wang, M. Improving Photoelectrochemical Performance by Building Fe2O3 Heterostructure on TiO2 Nanorod Arrays. Mater. Res. Bull. 2015, 70, 155–162. [Google Scholar] [CrossRef]
- Ayed, B.R.; Ajili, M.; Garcia, J.M.; Labidi, A.; Turki, N.K. Physical Properties Investigation and Gas Sensing Mechanism of Al: Fe2O3 Thin Films Deposited by Spray Pyrolysis. Superlattices Microstruct. 2019, 129, 91–104. [Google Scholar] [CrossRef]
- Peeva, A.; Dikovska, A.O.; Atanasov, P.A.; de Castro, M.J.; Skorupa, W. Rare-Earth Implanted Y2O3 Thin Films. Appl. Surf. Sci. 2007, 253, 8165–8168. [Google Scholar] [CrossRef] [Green Version]
- Kulal, P.M.; Dubal, D.P.; Lokhande, C.D.; Fulari, V.J. Chemical Synthesis of Fe2O3 Thin Films for Supercapacitor Application. J. Alloys Compd. 2011, 509, 2567–2571. [Google Scholar] [CrossRef]
- Onofre, Y.J.; Catto, A.C.; Bernardini, S.; Fiorido, T.; Aguir, K.; Longo, E.; Mastelaro, V.R.; da Silva, L.F.; de Godoy, M.P.F. Highly Selective Ozone Gas Sensor Based on Nanocrystalline Zn0.95Co0.05O Thin Film Obtained Via Spray Pyrolysis Technique. Appl. Surf. Sci. 2019, 478, 347–354. [Google Scholar] [CrossRef]
- Ardekani, S.R.; Aghdam, A.S.R.; Nazari, M.; Bayat, A.; Yazdani, E.; Saievar-Iranizad, E. A Comprehensive Review on Ultrasonic Spray Pyrolysis Technique: Mechanism, Main Parameters and Applications in Condensed Matter. J. Anal. Appl. Pyrolysis 2019, 141, 104631. [Google Scholar] [CrossRef]
- Kamoun, O.; Mami, A.; Amara, M.A.; Vidu, R.; Amlouk, M. Nanostructured Fe, Co-Codoped MoO3 Thin Films. Micromachines 2019, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Ayed, R.B.; Ajili, M.; Thamri, A.; Kamoun, N.T.; Abdelghani, A. Substrate Temperature Effect on the Crystal Growth and Optoelectronic Properties of Sprayed α-Fe2O3 Thin Films: Application to Gas Sensor and Novel Photovoltaic Solar Cell Structure. Mater. Technol. 2018, 33, 769–783. [Google Scholar] [CrossRef]
- Fareed, S.S.; Mythili, N.; Vijayaprasath, G.; Chandramohan, R.; Ravi, G. A-Fe2O3 Nanoparticles as a Byproduct from the Thin Film (Silar) Deposition Process: A Study on the Product. Mater. Today Proc. 2018, 5, 20955–20965. [Google Scholar] [CrossRef]
- Mia, M.N.H.; Pervez, M.F.; Hossain, M.K.; Rahman, M.R.; Uddin, M.J.; Al Mashud, M.A.; Ghosh, H.K.; Hoq, M. Influence of MG Content on Tailoring Optical Bandgap of MG-Doped ZnO Thin Film Prepared by Sol-Gel Method. Results Phys. 2017, 7, 2683–2691. [Google Scholar] [CrossRef]
- Reveendran, R.; Khadar, M.A. Structural, Optical and Electrical Properties of Cu Doped α-Fe2O3 Nanoparticles. Mater. Chem. Phys. 2018, 219, 142–154. [Google Scholar] [CrossRef]
- Juwhari, H.K.; Ikhmayies, S.J.; Lahlouh, B. Room Temperature Photoluminescence of Spray-Deposited ZnO Thin Films on Glass Substrates. Int. J. Hydrogen Energy 2017, 42, 17741–17747. [Google Scholar] [CrossRef]
- Makuku, O.; Mbaiwa, F.; Sathiaraj, T.S. Structural, Optical and Electrical Properties of Low Temperature Grown Undoped and (Al, Ga) Co-doped ZnO Thin Films by Spray Pyrolysis. Ceram. Int. 2016, 42, 14581–14586. [Google Scholar] [CrossRef]
- Srinatha, N.; Raghu, P.; Mahesh, H.M.; Angadi, B. Spin-Coated Al-Doped ZnO Thin Films for Optical Applications: Structural, Micro-Structural, Optical and Luminescence Studies. J. Alloys Compd. 2017, 722, 888–895. [Google Scholar] [CrossRef]
- Goncalves, L.F.; Rocha, L.S.R.; Longo, E.; Simões, A.Z. Calcium Doped BiFeO3 Films: Rietveld Analysis and Piezoelectric Properties. J. Mater. Sci. Mater. Electron. 2018, 29, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Fouad, O.A.; Ismail, A.A.; Zaki, Z.I.; Mohamed, R.M. Zinc Oxide Thin Films Prepared by Thermal Evaporation Deposition and Its Photocatalytic Activity. Appl. Catal. B Environ. 2006, 62, 144–149. [Google Scholar] [CrossRef]
Mg (at.%) | D (nm) | ε × 10−3 | a (Å) | c (Å) | V (Å3) |
---|---|---|---|---|---|
0 | 60.8 | 0.31 | 5.034 | 13.77 | 302.18 |
1 | 59.2 | 0.53 | 5.026 | 13.74 | 300.57 |
2 | 57.7 | 0.55 | 5.024 | 13.73 | 300.11 |
3 | 55.3 | 0.62 | 5.022 | 13.72 | 299.65 |
4 | 55.9 | 0.64 | 5.024 | 13.72 | 299.89 |
Mg (at.%) | Sa (nm) | Sq (nm) |
---|---|---|
0 | 70.7 | 95.1 |
1 | 63.4 | 85.5 |
2 | 60.6 | 80.6 |
3 | 76.6 | 104.1 |
4 | 74.9 | 102.6 |
Mg (at.%) | Edir | Eind |
---|---|---|
0 | 2.15 | 1.97 |
1 | 2.16 | 1.96 |
2 | 2.18 | 1.96 |
3 | 2.20 | 1.99 |
4 | 2.16 | 1.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayed, R.B.; Ajili, M.; Piñeiro, Y.; Alhalaili, B.; Rivas, J.; Vidu, R.; Kouass, S.; Turki, N.K. Effect of Mg Doping on the Physical Properties of Fe2O3 Thin Films for Photocatalytic Devices. Nanomaterials 2022, 12, 1179. https://doi.org/10.3390/nano12071179
Ayed RB, Ajili M, Piñeiro Y, Alhalaili B, Rivas J, Vidu R, Kouass S, Turki NK. Effect of Mg Doping on the Physical Properties of Fe2O3 Thin Films for Photocatalytic Devices. Nanomaterials. 2022; 12(7):1179. https://doi.org/10.3390/nano12071179
Chicago/Turabian StyleAyed, Rihab Ben, Mejda Ajili, Yolanda Piñeiro, Badriyah Alhalaili, José Rivas, Ruxandra Vidu, Salah Kouass, and Najoua Kamoun Turki. 2022. "Effect of Mg Doping on the Physical Properties of Fe2O3 Thin Films for Photocatalytic Devices" Nanomaterials 12, no. 7: 1179. https://doi.org/10.3390/nano12071179
APA StyleAyed, R. B., Ajili, M., Piñeiro, Y., Alhalaili, B., Rivas, J., Vidu, R., Kouass, S., & Turki, N. K. (2022). Effect of Mg Doping on the Physical Properties of Fe2O3 Thin Films for Photocatalytic Devices. Nanomaterials, 12(7), 1179. https://doi.org/10.3390/nano12071179