Nano-AgCu Alloy on Wood Surface for Mold Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Nano-AgCu
2.3. Moldstrains and Growth Condition
2.4. Anti-Mold Test
2.4.1. Mold Resistance of Nano-AgCu on Culture Medium
2.4.2. Mold Resistance of Nano-AgCu on Poplar Wood Surface
2.5. Leaching Test of Nano-AgCu-Treated Wood
3. Results
3.1. Characterization of Nano-AgCu Alloy and Its Inhibition Effects against the Three Molds on PDA Plates
3.2. Anti-Mold Effects of Nano-AgCu against the Three Molds on Wood Surfaces
4. Conclusions
- The retention and antimicrobial effectiveness of the nano-AgCu alloy on wood surfaces increased with the nanomaterial concentration, and the leaching rate increased non-linearly with retention;
- The combination of the advantages of the nano-AgCu alloy with quite small particle sizes (~15 nm), good distribution on wood surfaces, and the synergistic effect of the two elements promoted the achievement of a strong anti-mold effect (inhibition efficiency >75%) at lower retentions (0.342 g/m2); and
- The toxic threshold concentration of the nano-AgCu alloy against the three molds was 1000 mg/L, and the leaching rate only reached 7.678% due to strong interactions between the alloy and wood cell walls.
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gustavsson, L.; Nguyen, T.; Sathre, R.; Tettey, U.Y.A. Climate effects of forestry and substitution of concrete buildings and fossil energy. Renew. Sustain. Energy Rev. 2021, 136, 110435. [Google Scholar] [CrossRef]
- Nielsen, K.F.; Holm, G.; Uttrup, L.P.; Nielsen, P.A. Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int. Biodeterior. Biodegrad. 2004, 54, 325–336. [Google Scholar] [CrossRef]
- Gradeci, K.; Labonnote, N.; Time, B.; Köhler, J. Mould growth criteria and design avoidance approaches in wood-based materials—A systematic review. Constr. Build. Mater. 2017, 150, 77–88. [Google Scholar] [CrossRef]
- Gradeci, K.; Labonnote, N.; Köhler, J.; Time, B. Mould models applicable to wood-based materials—A generic framework. Energy Procedia 2017, 132, 177–182. [Google Scholar] [CrossRef]
- Schultz, T.P.; Nicholas, D.D.; Preston, A.F. A brief review of the past, present and future of wood preservation. Pest. Manag. Sci. 2007, 63, 784–788. [Google Scholar] [CrossRef]
- Stirling, R.; Temiz, A. Fungicides and insecticides used in wood preservation. In Deterioration and Protection of Sustainable Biomaterials; American Chemical Society: Washington, DC, USA, 2014; pp. 185–201. [Google Scholar]
- Lin, L.D.; Chen, Y.F.; Wang, S.Y.; Tsai, M.J. Leachability, metal corrosion, and termite resistance of wood treated with copper-based preservative. Int. Biodeterior. Biodegrad. 2009, 63, 533–538. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, X.; Liu, J.; Yan, Y.; Liu, X.; Wang, K.; Li, J. Evaluation of anti-mold, termite resistance and physical-mechanical properties of bamboo cross-linking modified by polycarboxylic acids. Constr. Build. Mater. 2021, 272, 121953. [Google Scholar] [CrossRef]
- Cunningham, B.; Engstrom, A.M.; Harper, B.J.; Harper, S.L.; Mackiewicz, M.R. Silver nanoparticles stable to oxidation and silver ion release show size-dependent toxicity in vivo. Nanomaterials 2021, 11, 1516. [Google Scholar] [CrossRef]
- Nisar, P.; Ali, N.; Rahman, L.; Ali, M.; Shinwari, Z.K. Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action. JBIC J. Biol. Inorg. Chem. 2019, 24, 929–941. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.; Mohamad Ibrahim, M.N. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front. Chem. 2020, 8, 341. [Google Scholar] [CrossRef]
- Borges, C.C.; Tonoli, G.H.D.; Cruz, T.M.; Duarte, P.J.; Junqueira, T.A. Nanoparticles-based wood preservatives: The next generation of wood protection? Cerne 2018, 24, 397–407. [Google Scholar] [CrossRef]
- Teng, T.J.; Arip, M.N.M.; Sudesh, K.; Nemoikina, A.; Jalaludin, Z.; Ng, E.P.; Lee, H.L. Conventional technology and nanotechnology in wood preservation: A review. BioResources 2018, 13, 9220–9252. [Google Scholar] [CrossRef] [Green Version]
- Terzi, E.; Kartal, S.N.; Yılgör, N.; Rautkari, L.; Yoshimura, T. Role of various nano-particles in prevention of fungal decay, mold growth and termite attack in wood, and their effect on weathering properties and water repellency. Int. Biodeterior. Biodegrad. 2016, 107, 77–87. [Google Scholar] [CrossRef]
- Pandoli, O.; Martins, R.D.S.; Romani, E.C.; Paciornik, S.; Maurício, M.H.D.P.; Alves, H.D.L.; Ghavami, K. Colloidal silver nanoparticles: An effective nano-filler material to prevent fungal proliferation in bamboo. RSC Adv. 2016, 6, 98325–98336. [Google Scholar] [CrossRef]
- Kartal, S.N.; Green, I.F.; Clausen, C.A. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? Int. Biodeterior. Biodegrad. 2009, 63, 490–495. [Google Scholar] [CrossRef]
- Pařil, P.; Baar, J.; Čermák, P.; Rademacher, P.; Prucek, R.; Sivera, M.; Panáček, A. Antifungal effects of copper and silver nanoparticles against white and brown-rot fungi. J. Mater. Sci. 2017, 52, 2720–2729. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Bao, Y.; Chen, Y.; Huang, C.; Li, N.; Chen, Z. Wet chemical synthesis of ZnO nanocoating on the surface of bamboo timber with improved mould-resistance. J. Saudi Chem. Soc. 2017, 21, 920–928. [Google Scholar] [CrossRef]
- Harandi, D.; Ahmadi, H.; Achachluei, M.M. Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot. Int. Biodeterior. Biodegrad. 2016, 108, 142–148. [Google Scholar] [CrossRef]
- Lin, L.; Yang, Y.; Via, B.K.; Liu, Y.; Guo, H.; Zhang, F. Modification and characterization of nano-Ag/TiO2 antimold agent for wood materials. For. Prod. J. 2018, 68, 70–77. [Google Scholar] [CrossRef]
- Lin, L.; Cao, J.; Zhang, J.; Cui, Q.; Liu, Y. Enhanced Anti-Mold Property and Mechanism Description of Ag/TiO2 Wood-Based Nanocomposites Formation by Ultrasound-and Vacuum-Impregnation. Nanomaterials 2020, 10, 682. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Yu, K.P.; Shao, W.C.; Tseng, C.H.; Pan, W.C. Novel mold-resistant building materials impregnated with thermally reduced nano-silver. Indoor Air 2018, 28, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Goffredo, G.B.; Citterio, B.; Biavasco, F.; Stazi, F.; Barcelli, S.; Munafo, P. Nanotechnology on wood: The effect of photocatalytic nanocoatings against Aspergillus niger. J. Cult. Herit. 2017, 27, 125–136. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Zhuang, X.; Pan, X.; Yu, H.; Sun, F.; Jiang, Y. Improved mould resistance and antibacterial activity of bamboo coated with ZnO/graphene. Roy. Soc. Open Sci. 2018, 5, 180173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantano, D.; Neubauer, N.; Navratilova, J.; Scifo, L.; Civardi, C.; Stone, V.; Wohlleben, W. Transformations of nanoenabled copper formulations govern release, antifungal effectiveness, and sustainability throughout the wood protection lifecycle. Environ. Sci. Technol. 2018, 52, 1128–1138. [Google Scholar] [CrossRef]
- Gadd, G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef]
- Ogar, A.; Tylko, G.; Turnau, K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci. Total Environ. 2015, 521, 305–314. [Google Scholar] [CrossRef]
- Priyadarshini, E.; Priyadarshini, S.S.; Cousins, B.G.; Pradhan, N. Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere 2021, 274, 129976. [Google Scholar] [CrossRef]
- Zabel, R.A.; Morrell, J.J. Wood molds, stains and discolorations. In Wood Microbiology: Decay and Its Prevention; Academic Press: Cambridge, MA, USA, 2020; pp. 363–383. [Google Scholar]
- Nair, S.; Sasidharan, A.; Divya, R.V.V.; Menon, D.; Nair, S.; Manzoor, K.; Raina, S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 2009, 20, 235–241. [Google Scholar] [CrossRef]
- Moya, R.; Berrocal, A.; Rodríguez, Z.A.; Vega, B.J.; Chaves, N.S. Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood Fiber Sci. 2014, 46, 527–538. [Google Scholar]
- Ameen, F.; Alsamhary, K.; Alabdullatif, J.A.; ALNadhari, S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 2021, 213, 112027. [Google Scholar] [CrossRef]
- Xiu, Z.M.; Zhang, Q.B.; Puppala, H.L.; Colvin, V.L.; Alvarez, P.J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275. [Google Scholar] [CrossRef] [PubMed]
- Le, O.B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Usmani, S.M.; Stephan, I.; Hubert, T.; Kemnitz, E. Nano metal fluorides for wood protection against fungi. ACS Appl. Nano Mater. 2018, 1, 1444–1449. [Google Scholar] [CrossRef]
- Clausen, C.A.; Kartal, S.N.; Arango, R.A.; Green, F. The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance. Nanoscale Res. Lett. 2011, 6, 427. [Google Scholar] [CrossRef] [Green Version]
Infection Value | Mold Coverage |
---|---|
0 | No fungal growth on the sample surface |
1 | Surface infection area <1/4 |
2 | Surface infection area 1/4~1/2 |
3 | Surface infection area 1/2~3/4 |
4 | Surface infection area >3/4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Dai, X.; Wei, L.; Luo, H.; Liu, Y.; Dong, X.; Yang, D.; Li, Y. Nano-AgCu Alloy on Wood Surface for Mold Resistance. Nanomaterials 2022, 12, 1192. https://doi.org/10.3390/nano12071192
Qi Y, Dai X, Wei L, Luo H, Liu Y, Dong X, Yang D, Li Y. Nano-AgCu Alloy on Wood Surface for Mold Resistance. Nanomaterials. 2022; 12(7):1192. https://doi.org/10.3390/nano12071192
Chicago/Turabian StyleQi, Yanran, Xiaohan Dai, Lianxiang Wei, Hongxue Luo, Yiliang Liu, Xiaoying Dong, Dequan Yang, and Yongfeng Li. 2022. "Nano-AgCu Alloy on Wood Surface for Mold Resistance" Nanomaterials 12, no. 7: 1192. https://doi.org/10.3390/nano12071192
APA StyleQi, Y., Dai, X., Wei, L., Luo, H., Liu, Y., Dong, X., Yang, D., & Li, Y. (2022). Nano-AgCu Alloy on Wood Surface for Mold Resistance. Nanomaterials, 12(7), 1192. https://doi.org/10.3390/nano12071192