Nano-Composite Filler of Heteropolyacid-Imidazole Modified Mesoporous Silica for High Temperature PEMFC at Low Humidity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membranes Preparation
2.2.1. Preparation of Mesoporous Silica (Si-MCM-41)
2.2.2. Chemical Anchorage of Imidazole
2.2.3. Immobilization of Heteropolyacid
2.2.4. Composite Membrane Preparation
2.3. Characterization
2.4. Conductivity and Single Cell Performance
3. Results and Discussion
3.1. Schematic Procedure
3.2. Characterization of Im(x)/PWA(y)/Si-MCM-41 Nano-Composite
3.2.1. Nitrogen Adsorption Studies
3.2.2. FE-SEM Images
3.2.3. XRD Patterns
3.2.4. FT-IR Spectra
3.3. Conductivity and Single Cell Performances of PEMFC Membrane Containing Im(x)/PWA(y)/Si-MCM-41 Nano-Composite Filler
3.3.1. Proton Conductivity
3.3.2. Evaluation of Single Cell Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sorensen, B. Hydrogen and Fuel Cells: Emerging Technologies and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Zhang, H.; Shen, P.K. Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chem. Rev. 2012, 112, 2780–2832. [Google Scholar] [CrossRef] [PubMed]
- Jannasch, P. Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr. Opin. Colloid Interface Sci. 2003, 8, 96–102. [Google Scholar] [CrossRef]
- Wilkinson, D.P.; Zhang, J.; Hui, R.; Fergus, J.; Li, X. Proton Exchange Membrane Fuel Cells, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Lee, C.; Park, J.; Jeon, Y.; Park, J.-I.; Einaga, H.; Truong, Y.B.; Kyratzis, I.L.; Mochida, I.; Choi, J.; Shul, Y.-G. Phosphate-Modified TiO2/ZrO2 Nanofibrous Web Composite Membrane for Enhanced Performance and Durability of High-Temperature Proton Exchange Membrane Fuel Cells. Energy Fuels 2017, 31, 7645–7652. [Google Scholar] [CrossRef]
- Lin, C.W.; Thangamuthu, R.; Yang, C.J. Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications. J. Membr. Sci. 2005, 253, 23–31. [Google Scholar] [CrossRef]
- Kim, J.D.; Honma, I. Highly proton conducting hybrid materials synthesized from 12-phosphotungstic and hexadecyltrimethylammonium salt. Solid State Ion. 2005, 176, 547–552. [Google Scholar] [CrossRef]
- Kim, J.D.; Honma, I. Proton conducting polydimethylsiloxane/zirconium oxide hybrid membranes added with phosphotungstic acid. Electrochim. Acta 2003, 48, 3633–3638. [Google Scholar] [CrossRef]
- Smitha, B.; Sridhar, S.; Khan, A.A. Proton conducting composite membranes from polysulfone and heteropolyacid for fuel cell applications. J. Polym. Sci. B Polym. Phys. 2005, 43, 1538–1547. [Google Scholar] [CrossRef]
- Malers, J.L.; Sweikart, M.; Horan, J.L.; Turner, J.A.; Herring, A.M. Studies of heteropoly acid/polyvinylidenedifluoride–hexafluoroproylene composite membranes and implication for the use of heteropoly acids as the proton conducting component in a fuel cell membrane. J. Power Sources 2007, 172, 83–88. [Google Scholar] [CrossRef]
- Malhotra, S.; Datta, R. Membrane-Supported Nonvolatile Acidic Electrolytes Allow Higher Temperature Operation of Proton-Exchange Membrane Fuel Cells. J. Electrochem. Soc. 1997, 144, L23. [Google Scholar] [CrossRef]
- Li, L.; Xu, L.; Wang, Y. Novel proton conducting composite membranes for direct methanol fuel cell. Mater. Lett. 2003, 57, 1406–1410. [Google Scholar] [CrossRef]
- Lakshminarayana, G.; Nogami, M. Synthesis and characterization of proton conducting inorganic–organic hybrid nanocomposite membranes based on tetraethoxysilane/trimethylphosphate/3-glycidoxypropyltrimethoxysilane/heteropoly acids. Electrochim. Acta 2009, 54, 4731–4740. [Google Scholar] [CrossRef]
- Kim, J.D.; Honma, I. Proton conducting polydimethylsiloxane/metal oxide hybrid membranes added with phosphotungstic acid(II). Electrochim. Acta 2004, 49, 3429–3433. [Google Scholar] [CrossRef]
- Štangar, U.L.; Grošelj, N.; Orel, B.; Schmitz, A.; Colomban, P. Proton-conducting sol–gel hybrids containing heteropoly acids. Solid State Ion. 2001, 145, 109–118. [Google Scholar] [CrossRef]
- Vernon, D.R.; Meng, F.; Dec, S.F.; Williamson, D.L.; Turner, J.A.; Herring, A.M. Synthesis, characterization, and conductivity measurements of hybrid membranes containing a mono-lacunary heteropolyacid for PEM fuel cell applications. J. Power Sources 2005, 139, 141–151. [Google Scholar] [CrossRef]
- Tatsumisago, M.; Minami, T. Preparation of Proton-Conducting Amorphous Films Containing Dodecamolybdophosphoric Acid by the Sol—Gel Method. J. Am. Ceram. Soc. 1989, 72, 484–486. [Google Scholar] [CrossRef]
- Gómez-Romero, P.; Asensio, J.A.; Borrós, S. Hybrid proton-conducting membranes for polymer electrolyte fuel cells: Phosphomolybdic acid doped poly(2,5-benzimidazole)—(ABPBI-H3PMo12O40). Electrochim. Acta 2005, 50, 4715–4720. [Google Scholar] [CrossRef]
- Štangar, U.L.; Orel, B.; Vince, J.; Jovanovski, V.; Spreizer, H.; Vuk, A.Š.; Hočevar, S. Silicotungstic acid/organically modified silane proton-conducting membranes. J. Solid State Chem. 2005, 9, 106–113. [Google Scholar]
- Helen, M.; Viswanathan, B.; Murthy, S.S. Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol. J. Power Sources 2006, 163, 433–439. [Google Scholar] [CrossRef]
- Zukowska, G.; Stevens, J.R.; Jeffrey, K.R. Anhydrous gel electrolytes doped with silicotungstic acid. Electrochim. Acta 2003, 48, 2157–2164. [Google Scholar] [CrossRef]
- Ramani, V.; Kunz, H.R.; Fenton, J.M. Stabilized heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation. Electrochim. Acta 2005, 50, 1181–1187. [Google Scholar] [CrossRef]
- Kreuer, K.D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 2001, 185, 29–39. [Google Scholar] [CrossRef]
- Marschall, R.; Sharifi, M.; Wark, M. Proton conductivity of imidazole functionalized ordered mesoporous silica: Influence of type of anchorage, chain length and humidity. Microporous Mesoporous Mater. 2009, 123, 21–29. [Google Scholar] [CrossRef]
- Cavalcanti, W.L.; Marschall, R.; Tölle, P.; Köhler, C.; Wark, M.; Frauenheim, T. Insight into Proton Conduction of Immobilised Imidazole Systems Via Simulations and Impedance Spectroscopy. Fuel Cells 2008, 8, 244–253. [Google Scholar] [CrossRef]
- Kim, H.J.; Jeon, Y.K.; Park, J.-I.; Shul, Y.-G. Heterocycle-modified 12-tungstophosphoric acid as heterogeneous catalyst for epoxidation of propylene with hydrogen peroxide. J. Mol. Catal. 2013, 378, 232–237. [Google Scholar] [CrossRef]
- Jeon, Y.K.; Lee, C.; Lee, G.; Kwon, O.; Kim, J.; Park, S.S.; Oh, K.; Shul, Y.-G. Thermally stable imidazole/heteropoly acid composite as a heterogeneous catalyst for m-xylene ammoxidation. Res. Chem. Intermed. 2021, 47, 287–302. [Google Scholar] [CrossRef]
- Jeon, Y.K.; Hwang, H.-K.; Park, J.; Hwang, H.; Shul, Y.-G. Temperature-dependent performance of the polymer electrolyte membrane fuel cell using short-side-chain perfluorosulfonic acid ionomer. Int. J. Hydrogen Energy 2014, 39, 11690–11699. [Google Scholar] [CrossRef]
- Jeon, Y.K.; Juon, S.; Hwang, H.; Park, J.; Shul, Y.-G. Accelerated Life-time Tests including Different Load Cycling Protocols for High Temperature Polymer Electrolyte Membrane Fuel Cells. Electrochim. Acta 2014, 148, 15–25. [Google Scholar] [CrossRef]
- Ryoo, R.; Kim, J.M. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium. Chem. Commun. 1995, 7, 711–712. [Google Scholar] [CrossRef]
- Armatas, G.S.; Salmas, C.E.; Louloudi, M.; Androutsopoulos, G.P.; Pomonis, P.J. Relationships among Pore Size, Connectivity, Dimensionality of Capillary Condensation, and Pore Structure Tortuosity of Functionalized Mesoporous Silica. Langmuir 2003, 19, 3128–3136. [Google Scholar] [CrossRef]
- Claude, R.-D.; Fournier, M. Catalysis by polyoxometalates. Part 3.—Influence of vanadium(V) on the thermal stability of 12-metallophosphoric acids from in situ infrared studies. J. Chem. Soc. Faraday Trans. 1991, 87, 3913–3920. [Google Scholar]
- Zhao, C.; Qiao, X.; Yi, Z.; Guan, Q.; Li, W. Active centre and reactivity descriptor of a green single component imidazole catalyst for acetylene hydrochlorination. Phys. Chem. Chem. Phys. 2020, 22, 2849–2857. [Google Scholar] [CrossRef]
- Tominaga, Y.; Hong, I.C.; Asai, S.; Sumita, M. Proton conduction in Nafion composite membranes filled with mesoporous silica. J. Power Sources 2007, 171, 530–534. [Google Scholar] [CrossRef]
- Aparicio, M.; Castro, Y.; Duran, A. Synthesis and characterisation of proton conducting styrene-co-methacrylate–silica sol–gel membranes containing tungstophosphoric acid. Solid State Ion. 2005, 176, 333–340. [Google Scholar] [CrossRef]
Entry | Total Pore Volume (cm3/g) | SBET (m2/g) | Average Pore Diameter (nm) |
---|---|---|---|
Pure Si-MCM-41 | 0.8943 | 1014.5 | 3.4565 |
Im1/PWA1/Si-MCM-41 | 0.5939 | 880.89 | 2.7383 |
Im5/PWA3/Si-MCM-41 | 0.4453 | 705.02 | 2.5266 |
Im10/PWA6/Si-MCM-41 | 0.0610 | 6.7194 | - |
Vibration Mode Assignment | Si-MCM-41 | Im1/PWA1 /Si-MCM-41 | Im5/PWA3 /Si-MCM-41 | Im10/PWA6 /Si-MCM-41 |
---|---|---|---|---|
Si-O | 459.55 | 459.55 | 459.55 | 459.55 |
Si-O-Si /W-O-W | 806.21 | 808.14 | 815.85 | 813.93 |
W-O-W | - | 900.72 | 902.65 | 896.86 |
Si-O-H | 965.80 | - | 962.44 | - |
W-O | - | 979.39 | 975.94 | 981.72 |
Si-O/P-O | 1083.95 | 1085.88 | 1087.81 | 1082.59 |
C=N | - | 1448.48 | 1448.49 | 1450.41 |
O-H deformation | ~1600 | ~1600 | ~1600 | ~1600 |
Propyl group | - | 2800–2950 | 2800–2950 | 2800–2950 |
Absorbed H2O | 3400–3600 | 3400–3600 | 3400–3600 | 3400–3600 |
Composite Membrane | 75 °C | 90 °C | 120 °C | 140 °C |
---|---|---|---|---|
Pure Aquivion™ | 2.0762 | 1.1149 | 1.6356 | 2.4104 |
Si-MCM-41 (inorganic 13 wt%) | 0.9104 | 0.5651 | 0.6646 | 0.5381 |
Im10/Si-MCM-41 (inorganic 13 wt%) | 0.7442 | 0.6879 | 0.7144 | 0.6061 |
Im10/PWA6/Si-MCM-41 (PWA 10 wt%) | 18.4112 | 17.0879 | 27.6482 | 35.3058 |
Im10/PWA6/Si-MCM-41 (PWA 20 wt%) | 4.2990 | 3.9622 | 19.7418 | 17.1270 |
Im10/PWA6/Si-MCM-41 (PWA 30 wt%) | 1.4999 | 0.8503 | 1.0281 | 1.9279 |
Im5/PWA3/Si-MCM-41 (PWA 10 wt%) | 8.4492 | 19.3881 | 26.1224 | 14.7610 |
Im5/PWA3/Si-MCM-41 (PWA 20 wt%) | 9.9214 | 24.2919 | 6.0827 | 2.2217 |
Im5/PWA3/Si-MCM-41 (PWA 30 wt%) | 17.0014 | 17.6114 | 3.2861 | 1.0849 |
Im1/PWA1/Si-MCM-41 (PWA 10 wt%) | 17.1490 | 21.0177 | 13.5502 | 9.8843 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.; Kim, J.; Park, J.; Jeon, Y.; Park, J.; Shul, Y.-G. Nano-Composite Filler of Heteropolyacid-Imidazole Modified Mesoporous Silica for High Temperature PEMFC at Low Humidity. Nanomaterials 2022, 12, 1230. https://doi.org/10.3390/nano12071230
Lee G, Kim J, Park J, Jeon Y, Park J, Shul Y-G. Nano-Composite Filler of Heteropolyacid-Imidazole Modified Mesoporous Silica for High Temperature PEMFC at Low Humidity. Nanomaterials. 2022; 12(7):1230. https://doi.org/10.3390/nano12071230
Chicago/Turabian StyleLee, Gicheon, Jinsol Kim, Jungho Park, Yukwon Jeon, Jinwon Park, and Yong-Gun Shul. 2022. "Nano-Composite Filler of Heteropolyacid-Imidazole Modified Mesoporous Silica for High Temperature PEMFC at Low Humidity" Nanomaterials 12, no. 7: 1230. https://doi.org/10.3390/nano12071230
APA StyleLee, G., Kim, J., Park, J., Jeon, Y., Park, J., & Shul, Y. -G. (2022). Nano-Composite Filler of Heteropolyacid-Imidazole Modified Mesoporous Silica for High Temperature PEMFC at Low Humidity. Nanomaterials, 12(7), 1230. https://doi.org/10.3390/nano12071230