Biotemplated CdS Nano-Aggregate Networks for Highly Effective Visible-Light Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Characterizations
2.3. Photocatalytic Studies
3. Results and Discussion
3.1. Characterizations
3.2. Photocatalytic Hydrogen Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Crookes-Goodson, W.J.; Slocik, J.M.; Naik, R.R. Bio-directed synthesis and assembly of nanomaterials. Chem. Soc. Rev. 2008, 37, 2403–2412. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulou, S.; Sierra-Sastre, Y.; Mark, S.S.; Batt, C.A. Biotemplated Nanostructured Materials. Chem. Mater. 2008, 20, 821–834. [Google Scholar] [CrossRef]
- Fan, T.-X.; Chow, S.-K.; Zhang, D. Biomorphic mineralization: From biology to materials. Prog. Mater. Sci. 2009, 54, 542–659. [Google Scholar] [CrossRef]
- Paris, O.; Fritz-Popovski, G.; Van Opdenbosch, D.; Zollfrank, C. Recent Progress in the Replication of Hierarchical Biological Tissues. Adv. Funct. Mater. 2013, 23, 4408–4422. [Google Scholar] [CrossRef]
- Miao, Y.; Zhai, Z.; He, J.; Li, B.; Li, J.; Wang, J. Synthesis, characterizations and photocatalytic studies of mesoporous titania prepared by using four plant skins as templates. Mater. Sci. Eng. C 2010, 30, 839–846. [Google Scholar] [CrossRef]
- He, J.; Chen, D.; Li, Y.; Shao, J.; Xie, J.; Sun, Y.; Yan, Z.; Wang, J. Diatom-templated TiO2 with enhanced photocatalytic activity: Biomimetics of photonic crystals. Appl. Phy. A 2013, 113, 327–332. [Google Scholar] [CrossRef]
- He, J.; Zi, G.; Yan, Z.; Li, Y.; Xie, J.; Duan, D.; Chen, Y.; Wang, J. Biogenic C-doped titania templated by cyanobacteria for visible-light photocatalytic degradation of Rhodamine B. J. Environ. Sci. 2014, 26, 1195–1202. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, L. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 2013, 3, 1672. [Google Scholar] [CrossRef]
- Sweeney, R.Y.; Mao, C.; Gao, X.; Burt, J.L.; Belcher, A.M.; Georgiou, G.; Iverson, B.L. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol. 2004, 11, 1553–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, H.J.; Zhang, Z.M.; Guo, Y.; Yang, G.E. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf. B Biointerfaces 2009, 70, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Gattas-Asfura, K.M.; Xu, J.; Patel, R.A.; Dadlani, A.; Sillero-Mahinay, M.; Cushmore, M.; Rastogi, V.K.; Shah, S.S.; Leblanc, R.M. Organophosphorus acid anhydrolase bio-template for the synthesis of CdS quantum dots. Chem. Commun. 2011, 47, 7242–7244. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc. 2002, 124, 12108–12109. [Google Scholar] [CrossRef]
- Iwahori, K.; Yamashita, I. Fabrication of CdS nanoparticles in the bio-template, apoferritin cavity by a slow chemical reaction system. J. Phy. Conf. Ser. 2007, 61, 492–496. [Google Scholar] [CrossRef]
- Shenton, W.; Pum, D.; Sleytr, U.B.; Mann, S. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 1997, 389, 585–587. [Google Scholar] [CrossRef]
- Shen, L.; Bao, N.; Prevelige, P.E.; Gupta, A. Fabrication of ordered nanostructures of sulfide nanocrystal assemblies over self-assembled genetically engineered P22 coat protein. J. Am. Chem. Soc. 2010, 132, 17354–17357. [Google Scholar] [CrossRef]
- Zhou, Z.; Bedwell, G.J.; Li, R.; Bao, N.; Prevelige, P.E.; Gupta, A. P22 virus-like particles constructed Au/CdS plasmonic photocatalytic nanostructures for enhanced photoactivity. Chem. Commun. 2015, 51, 1062–1065. [Google Scholar] [CrossRef]
- Shen, L.M.; Bao, N.Z.; Prevelige, P.E.; Gupta, A. Escherichia coli Bacteria-Templated Synthesis of Nanoporous Cadmium Sulfide Hollow Microrods for Efficient Photocatalytic Hydrogen Production. J. Phys. Chem. C 2010, 114, 2551–2559. [Google Scholar] [CrossRef]
- Yang, J.; Yu, J.; Fan, J.; Sun, D.; Tang, W.; Yang, X. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J. Hazard. Mater. 2011, 189, 377–383. [Google Scholar] [CrossRef]
- Chen, Y.; He, J.; Li, J.; Mao, M.; Yan, Z.; Wang, W.; Wang, J. Hydrilla derived ZnIn2S4 photocatalyst with hexagonal-cubic phase junctions: A bio-inspired approach for H2 evolution. Catal. Commun. 2016, 87, 1–5. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, K.; Wang, J.; Cui, D.; Zhao, M. Fabrication and characterization of CdS nanowires templated in tobacco mosaic virus with improved photocatalytic ability. Appl. Microbiol. Biot. 2021, 105, 8255–8264. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, S.N.; Behera, B.C.; Sahoo, N.K.; Tripathy, S.K. Schottky junction devices by using bio-molecule DNA template-based one dimensional CdS-nanostructures. Biosens. Bioelectron. 2021, 190, 113402. [Google Scholar] [CrossRef] [PubMed]
- Devaraji, P.; Gao, R.; Xiong, L.; Jia, X.; Huang, L.; Chen, W.; Liu, S.; Mao, L. Usage of natural leaf as a bio-template to inorganic leaf: Leaf structure black TiO2/CdS heterostructure for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 14369–14383. [Google Scholar] [CrossRef]
- Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Enhanced photocatalytic H2 production performance of CdS hollow spheres using C and Pt as bi-cocatalysts. Chin. J. Catal. 2021, 42, 743–752. [Google Scholar] [CrossRef]
- Zhong, W.; Zhuang, Z.; Zhu, Z.; Zhou, G.; Zhu, X.; Ma, L.; Xu, B.; He, G.; Gu, F.; Sun, F. Photochemical Construction of Ni/CdS Double-Walled Magnetic Hollow Microspheres with Simultaneously Enhanced Visible-Light Photocatalytic Activity and Recyclability. ChemPhotoChem 2021, 5, 735–747. [Google Scholar] [CrossRef]
- Deng, L.; Fang, N.; Wu, S.; Shu, S.; Chu, Y.; Guo, J.; Cen, W. Uniform H-CdS@NiCoP core-shell nanosphere for highly efficient visible-light-driven photocatalytic H2 evolution. J. Colloid Interf. Sci. 2022, 608, 2730–2739. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Q.; Yang, W.; Li, M.; Song, Y. Aquatic plant inspired hierarchical artificial leaves for highly efficient photocatalysis. J. Mater. Chem. A 2013, 1, 7760. [Google Scholar] [CrossRef]
- Li, X.; Fan, T.; Zhou, H.; Chow, S.-K.; Zhang, W.; Zhang, D.; Guo, Q.; Ogawa, H. Enhanced Light-Harvesting and Photocatalytic Properties in Morph-TiO2 from Green-Leaf Biotemplates. Adv. Funct. Mater. 2009, 19, 45–56. [Google Scholar] [CrossRef]
- Zhou, H.; Li, X.; Fan, T.; Osterloh, F.E.; Ding, J.; Sabio, E.M.; Zhang, D.; Guo, Q. Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis. Adv. Mater. 2010, 22, 951–956. [Google Scholar] [CrossRef]
- Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J. Catal. 2009, 266, 165–168. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, J.; Bao, J.; Huang, X.; Mo, X. Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing. J. Mater. Chem. 2007, 17, 1087. [Google Scholar] [CrossRef]
- Sathish, M.; Viswanath, R. Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: Effect of particle size, noble metal and support. Catal. Today 2007, 129, 421–427. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Zhang, Z. In situ fabrication of mesoporous CdS nanoparticles in microemulsion by gamma ray irradiation. Mater. Let. 2008, 62, 787–790. [Google Scholar] [CrossRef]
- Mohanan, J.L.; Brock, S.L. CdS aerogels: Effect of concentration and primary particle size on surface area and opto-electronic properties. J. Sol-Gel Sci. Technol. 2006, 40, 341–350. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Y.; Deveaux, J.G.; Masoud, M.A.; Chandra, F.S.; Chen, H.; Zhang, D.; Feng, L. Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. Minerals 2019, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.J.; Cao, Y.L.; Jia, D.Z.; Niu, X.J. Facile synthesis of CdS nanoparticles photocatalyst with high performance. Ceram. Int. 2013, 39, 1511–1517. [Google Scholar] [CrossRef]
- Zheng, X.; Weng, J.; Hu, B. Microwave-assisted synthesis of mesoporous CdS quantum dots modified by oleic acid. Mat. Sci. Semicon. Proc. 2010, 13, 217–220. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J.; Tao, Z.; Dong, F.; Wang, K.; Ma, X.; Yang, P.; Hu, P.; Xu, Y.; Yang, L. Facile synthesis of mesoporous CdS nanospheres and their application in photocatalytic degradation and adsorption of organic dyes. CrystEngComm 2012, 14, 1185. [Google Scholar] [CrossRef]
- Gao, F.; Lu, Q.; Zhao, D. Synthesis of Crystalline Mesoporous CdS Semiconductor Nanoarrays Through a Mesoporous SBA-15 Silica Template Technique. Adv. Mater. 2003, 15, 739–742. [Google Scholar] [CrossRef]
- Zhang, W.-M.; Jiang, Y.-Q.; Cao, X.-Y.; Chen, M.; Ge, D.-L.; Sun, Z.-X. Synthesis of pore-variable mesoporous CdS and evaluation of its photocatalytic activity in degrading methylene blue. Mater. Res. Bull. 2013, 48, 4379–4384. [Google Scholar] [CrossRef]
- Han, Z.; Zhu, H.; Shi, J.; Parkinson, G.; Lu, G.Q. Preparation of mesoporous cadmium sulfide nanoparticles with moderate pore size. J. Solid State Chem. 2007, 180, 902–906. [Google Scholar] [CrossRef]
- Xia, C.; Wang, N.; Kim, X. Mesoporous CdS spheres for high-performance hybrid solar cells. Electrochim. Acta 2011, 56, 9504–9507. [Google Scholar] [CrossRef]
- Yu, C.; Zhou, W.; Yu, J.; Yang, J.; Fan, Q. Rapid Fabrication of CdS Nanocrystals with Well Mesoporous Structure Under Ultrasound Irradiation at Room Temperature. Chem. Res. Chin. Univ. 2012, 28, 124–128. [Google Scholar]
- Huang, Y.; Xu, Y.; Zhang, J.; Yin, X.; Guo, Y.; Zhang, B. Hierarchical ultrathin-branched CdS nanowire arrays with enhanced photocatalytic performance. J. Mater. Chem. A 2015, 3, 19507–19516. [Google Scholar] [CrossRef]
- Jin, J.; Yu, J.; Liu, G.; Wong, P.K. Single crystal CdS nanowires with high visible-light photocatalytic H2 production performance. J. Mater. Chem. A 2013, 1, 10927. [Google Scholar] [CrossRef]
- Yu, J.; Yu, Y.; Zhou, P.; Xiao, W.; Cheng, B. Morphology-dependent photocatalytic H2 production activity of CdS. Appl. Catal. B Environ. 2014, 156–157, 184–191. [Google Scholar] [CrossRef]
- Li, C.; Han, L.; Liu, R.; Li, H.; Zhang, S.; Zhang, G. Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: Enhanced photocatalytic activity toward hydrogen evolution. J. Mater. Chem. 2012, 22, 23815. [Google Scholar] [CrossRef]
- Lang, D.; Xiang, Q.; Qiu, G.; Feng, X.; Liu, F. Effects of crystalline phase and morphology on the visible light photocatalytic H2 production activity of CdS nanocrystals. Dalton Trans. 2014, 43, 7245–7253. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, N.; Yu, J.; Yu, J.C. A Hollow Porous CdS Photocatalyst. Adv. Mater. 2018, 30, e1804368. [Google Scholar] [CrossRef]
- Chastain, J.; King, R.C., Jr. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Yang, Y.; Zhang, Y.; Fang, Z.; Zhang, L.; Zheng, Z.; Wang, Z.; Feng, W.; Weng, S.; Zhang, S.; Liu, P. Simultaneous Realization of Enhanced Photoactivity and Promoted Photostability by Multilayered MoS2 Coating on CdS Nanowire Structure via Compact Coating Methodology. ACS Appl. Mater. Int. 2017, 9, 6950–6958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, Q.; Jing, D.; Wang, Y.; Guo, L. Visible photoactivity and antiphotocorrosion performance of PdS–CdS photocatalysts modified by polyaniline. Int. J. Hydrogen Energy 2012, 37, 791–796. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zhou, H.; Xiao, G.; Chen, Y.; Yan, Z.; Wang, J. Biotemplated CdS Nano-Aggregate Networks for Highly Effective Visible-Light Photocatalytic Hydrogen Production. Nanomaterials 2022, 12, 1268. https://doi.org/10.3390/nano12081268
He J, Zhou H, Xiao G, Chen Y, Yan Z, Wang J. Biotemplated CdS Nano-Aggregate Networks for Highly Effective Visible-Light Photocatalytic Hydrogen Production. Nanomaterials. 2022; 12(8):1268. https://doi.org/10.3390/nano12081268
Chicago/Turabian StyleHe, Jiao, Hongli Zhou, Guo Xiao, Yongjuan Chen, Zhiying Yan, and Jiaqiang Wang. 2022. "Biotemplated CdS Nano-Aggregate Networks for Highly Effective Visible-Light Photocatalytic Hydrogen Production" Nanomaterials 12, no. 8: 1268. https://doi.org/10.3390/nano12081268
APA StyleHe, J., Zhou, H., Xiao, G., Chen, Y., Yan, Z., & Wang, J. (2022). Biotemplated CdS Nano-Aggregate Networks for Highly Effective Visible-Light Photocatalytic Hydrogen Production. Nanomaterials, 12(8), 1268. https://doi.org/10.3390/nano12081268