Emerging Functions of Nano-Organized Polysaccharides
Funding
Conflicts of Interest
References
- Miyagi, K.; Teramoto, Y. Construction of Functional Materials in Various Material Forms from Cellulosic Cholesteric Liquid Crystals. Nanomaterials 2021, 11, 2969. [Google Scholar] [CrossRef]
- Sakuma, W.; Fujisawa, S.; Berglund, L.A.; Saito, T. Nanocellulose Xerogel as Template for Transparent, Thick, Flame-Retardant Polymer Nanocomposites. Nanomaterials 2021, 11, 3032. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, M.; Jahn, E.; Mautner, A.; Veigel, S.; Böhmdorfer, S.; Potthast, A.; Gindl-Altmutter, W.; Rosenau, T. Facile Preparation of Mechanically Robust and Functional Silica/Cellulose Nanofiber Gels Reinforced with Soluble Polysaccharides. Nanomaterials 2022, 12, 895. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Uetani, K.; Nogi, M.; Koga, H. Polydopamine Doping and Pyrolysis of Cellulose Nanofiber Paper for Fabrication of Three-Dimensional Nanocarbon with Improved Yield and Capacitive Performances. Nanomaterials 2021, 11, 3249. [Google Scholar] [CrossRef] [PubMed]
- Tsuneyasu, S.; Watanabe, R.; Takeda, N.; Uetani, K.; Izakura, S.; Kasuya, K.; Takahashi, K.; Satoh, T. Enhancement of Luminance in Powder Electroluminescent Devices by Substrates of Smooth and Transparent Cellulose Nanofiber Films. Nanomaterials 2021, 11, 697. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, N.; Hatakeyama, M.; Kitaoka, T. Enzymatic Preparation and Characterization of Spherical Microparticles Composed of Artificial Lignin and TEMPO-oxidized Cellulose Nanofiber. Nanomaterials 2021, 11, 917. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xiang, Z. Highly Stable Pickering Emulsions with Xylan Hydrate Nanocrystals. Nanomaterials 2021, 11, 2558. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kasuya, K.; Koga, H.; Nogi, M.; Uetani, K. Thermal Conductivity Analysis of Chitin and Deacetylated-Chitin Nanofiber Films under Dry Conditions. Nanomaterials 2021, 11, 658. [Google Scholar] [CrossRef] [PubMed]
- Yui, T.; Uto, T.; Ogawa, K. Molecular and Crystal Structure of a Chitosan–Zinc Chloride Complex. Nanomaterials 2021, 11, 1407. [Google Scholar] [CrossRef] [PubMed]
- Noda, T.; Hatakeyama, M.; Kitaoka, T. Combination of Polysaccharide Nanofibers Derived from Cellulose and Chitin Promotes the Adhesion, Migration and Proliferation of Mouse Fibroblast Cells. Nanomaterials 2022, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Mochizuki, T.; Lila, A.S.A.; Akagi, S.; Tajima, K.; Fujita, K.; Shimizu, T.; Ishima, Y.; Matsushima, T.; Kusano, T.; et al. Doxorubicin Embedded into Nanofibrillated Bacterial Cellulose (NFBC) Produces a Promising Therapeutic Outcome for Peritoneally Metastatic Gastric Cancer in Mice Models via Intraperitoneal Direct Injection. Nanomaterials 2021, 11, 1697. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitaoka, T. Emerging Functions of Nano-Organized Polysaccharides. Nanomaterials 2022, 12, 1277. https://doi.org/10.3390/nano12081277
Kitaoka T. Emerging Functions of Nano-Organized Polysaccharides. Nanomaterials. 2022; 12(8):1277. https://doi.org/10.3390/nano12081277
Chicago/Turabian StyleKitaoka, Takuya. 2022. "Emerging Functions of Nano-Organized Polysaccharides" Nanomaterials 12, no. 8: 1277. https://doi.org/10.3390/nano12081277
APA StyleKitaoka, T. (2022). Emerging Functions of Nano-Organized Polysaccharides. Nanomaterials, 12(8), 1277. https://doi.org/10.3390/nano12081277