Gas Sensors and Semiconductor Nanotechnology
Material | Technology | Gas Sensitivity |
mesoporous AlO(OH) | sol-gel and spin-coating | NH3 |
SnO2–NiO nanoneedles | hydrothermal synthesis | NO2 |
α-Fe2O3 nanoparticles | in situ corrosion method of scorodite | xylene |
NiO-ZnO nanorods | hydrothermal/sol-gel | H2S |
WO3–SnO2 composite nanorod | hydrothermal/sputtering | acetone |
SnO2, Pd/SnO2, Au/SnO2, AuPd/SnO2 nanocomposites | flame spray pyrolysis | C3H8, CO, CH4, H2, NO2, NH3, acetone. |
Funding
Conflicts of Interest
References
- Mizsei, J. Forty years of adventure with semiconductor gas sensors. Procedia Eng. 2016, 168, 221–226. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, Z.; Yang, D.; Wang, Y.; Ma, C.; Tao, M.; Sun, K.; Yang, J.; Wang, J. Orientation Ordering and Chiral Superstructures in Fullerene Monolayer on Cd (0001). Nanomaterials 2020, 10, 1305. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.C.; Chao, Y. Enhancement of Acetone Gas-Sensing Responses of Tapered WO3 Nanorods through Sputtering Coating with a Thin SnO2 Coverage Layer. Nanomaterials 2019, 9, 864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ao, D.; Li, Z.; Fu, Y.; Tang, Y.; Yan, S.; Zu, X. Heterostructured NiO/ZnO Nanorod Arrays with Significantly Enhanced H2S Sensing Performance. Nanomaterials 2019, 9, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Tang, X.; Cao, S.; Chen, X.; Rong, Z. The Synthesis of the Pomegranate-Shaped α-Fe2O3 Using an In Situ Corrosion Method of Scorodite and Its Gas-Sensitive Property. Nanomaterials 2019, 9, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Zhou, Q.; Wang, J.; Lu, Z.; Xu, L.; Zeng, W. Hydrothermal Synthesis of SnO2 Nanoneedle-Anchored NiO Microsphere and its Gas Sensing Performances. Nanomaterials 2019, 9, 1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Zu, X.; Ao, D.; Yu, J.; Xiang, X.; Xie, W.; Tang, Y.; Li, S.; Fu, Y. NH3-Sensing Mechanism Using Surface Acoustic Wave Sensor with AlO(OH) Film. Nanomaterials 2019, 9, 1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krivetskiy, V.; Zamanskiy, K.; Beltyukov, A.; Asachenko, A.; Topchiy, M.; Nechaev, M.; Garshev, A.; Krotova, A.; Filatova, D.; Maslakov, K.; et al. Effect of AuPd Bimetal Sensitization on Gas Sensing Performance of Nanocrystalline SnO2 Obtained by Single Step Flame Spray Pyrolysis. Nanomaterials 2019, 9, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, G.W.; Akbar, S.; Bhansali, S.; Daniele, M.; Erb, P.D.; Johnson, K.; Liu, C.-C.; Miller, D.; Oralkan, O.; Hesketh, P.J. Editors’ Choice—Critical Review—A Critical Review of Solid State Gas Sensors. J. Electrochem. Soc. 2020, 167, 037570. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizsei, J. Gas Sensors and Semiconductor Nanotechnology. Nanomaterials 2022, 12, 1322. https://doi.org/10.3390/nano12081322
Mizsei J. Gas Sensors and Semiconductor Nanotechnology. Nanomaterials. 2022; 12(8):1322. https://doi.org/10.3390/nano12081322
Chicago/Turabian StyleMizsei, János. 2022. "Gas Sensors and Semiconductor Nanotechnology" Nanomaterials 12, no. 8: 1322. https://doi.org/10.3390/nano12081322
APA StyleMizsei, J. (2022). Gas Sensors and Semiconductor Nanotechnology. Nanomaterials, 12(8), 1322. https://doi.org/10.3390/nano12081322