Study of Water Adsorption on EDTA-Modified LTA Zeolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. X-ray Powder Diffraction (XRD)
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. Solid-State Nuclear Magnetic Resonance (NMR)
2.2.4. Nitrogen Adsorption Measurements
2.2.5. Thermogravimetric Analysis (TGA)
2.2.6. Differential Scanning Calorimetry (DSC)
2.2.7. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2.8. Water Vapor Adsorption Measurements
3. Results and Discussion
3.1. Materials Characterization
3.1.1. XRD Analysis
3.1.2. EDX Elemental Analysis
3.1.3. FTIR Spectra Analysis
3.1.4. Solid-State NMR Analysis
3.2. Textural Characterization
3.2.1. Nitrogen Adsorption Study
3.2.2. Water Vapor Adsorption Isotherms
3.3. Thermal Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahraminia, S.; Anbia, M.; Koohsaryan, E. Dehydration of Natural Gas and Biogas Streams Using Solid Desiccants: A Review. Front. Chem. Sci. Eng. 2021, 15, 1050–1074. [Google Scholar] [CrossRef]
- Li, G.; Xiao, P.; Zhang, J.; Webley, P.A.; Xu, D. The Role of Water on Postcombustion CO2 Capture by Vacuum Swing Adsorption: Bed Layering and Purge to Feed Ratio. AIChE J. 2014, 60, 673–689. [Google Scholar] [CrossRef]
- Bregante, D.T.; Chan, M.C.; Tan, J.Z.; Ayla, E.Z.; Nicholas, C.P.; Shukla, D.; Flaherty, D.W. The Shape of Water in Zeolites and Its Impact on Epoxidation Catalysis. Nat. Catal. 2021, 4, 797–808. [Google Scholar] [CrossRef]
- Feng, C.; E, J.; Han, W.; Deng, Y.; Zhang, B.; Zhao, X.; Han, D. Key Technology and Application Analysis of Zeolite Adsorption for Energy Storage and Heat-Mass Transfer Process: A Review. Renew. Sustain. Energy Rev. 2021, 144, 110954. [Google Scholar] [CrossRef]
- Rakoczy, R.A.; Traa, Y. Nanocrystalline zeolite A: Synthesis, ion exchange and dealumination. Microporous Mesoporous Mater. 2003, 60, 69–78. [Google Scholar] [CrossRef]
- Gomez-Alvares, P.; Perez-Carbajo, J.; Balestra, S.R.G.; Calero, S. Impact of the Nature of Exchangeable Cations on the LTA-Type Zeolite Hydration. J. Phys. Chem. C 2016, 120, 23254–23261. [Google Scholar] [CrossRef]
- Jaramillo, E.; Chandross, M. Adsorption of Small Molecules in LTA Zeolites. 1. NH3, CO2, and H2O in Zeolite 4A. J. Phys. Chem. B 2004, 108, 20155–20159. [Google Scholar] [CrossRef]
- Karge, H.G.; Anderson, P.; Weitkamp, J.; Beyer, H.K.; Gallezot, P.; Harjula, R.; Karge, H.G.; Rymsa, U.; Schulz-Ekloff, G.; Townsend, R.P.; et al. Post-Synthesis Modification I; Springer: Berlin, Germany, 2014; ISBN 9783662308363. [Google Scholar]
- Ristić, A.; Fischer, F.; Hauer, A.; Zabukovec Logar, N. Improved Performance of Binder-Free Zeolite Y for Low-Temperature Sorption Heat Storage. J. Mater. Chem. A 2018, 6, 11521–11530. [Google Scholar] [CrossRef] [Green Version]
- Le van Mao, R.; Lavigne, J.A.; Sjiariel, B.; Langford, C.H. Mesoporous aluminosilicates prepared from zeolites by treatment with ammonium fluorosilicate. J. Mater. Chem. 1993, 3, 679–683. [Google Scholar] [CrossRef]
- Le Van Mao, R.; Vo, N.T.C.; Denes, G.; Le, T.S. Production of porous materials by dealumination of Ca-A zeolite. J. Porous Mater. 1995, 1, 175–183. [Google Scholar] [CrossRef]
- Le van Mao, R.; Vo, N.T.C.; Sjiariel, B.; Lee, L.; Denes, G. Mesoporous aluminosilicates: Preparation from Ca-A zeolite by treatment with ammonium fluorosilicate. J. Mater. Chem. 1992, 2, 595–599. [Google Scholar] [CrossRef]
- Valtchev, V.; Majano, G.; Mintova, S.; Pérez-Ramírez, J. Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev. 2013, 42, 263–290. [Google Scholar] [CrossRef] [PubMed]
- Pliekhov, O.; Pliekhova, O.; Arčon, I.; Bondino, F.; Magnano, E.; Mali, G.; Logar, N.Z. Study of water adsorption on EDTA dealuminated zeolite Y. Microporous Mesoporous Mater. 2020, 302, 110208. [Google Scholar] [CrossRef]
- Karami, D.; Rohani, S. A Novel Approach for the Synthesis of Zeolite Y. Ind. Eng. Chem. Res. 2009, 48, 4837–4843. [Google Scholar] [CrossRef]
- Massiot, D.; Fayon, F.; Capron, M.; King, I.; le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002, 40, 70–76. [Google Scholar] [CrossRef]
- Kerr, G.T. Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. J. Phys. Chem. 1968, 72, 2594–2596. [Google Scholar] [CrossRef]
- Mozgawa, W.; Jastrzȩbski, W.; Handke, M. Vibrational spectra of D4R and D6R structural units. J. Mol. Struct. 2005, 744–747, 663–670. [Google Scholar] [CrossRef]
- Mozgawa, W.; Król, M.; Barczyk, K. Badania FT-IR zeolitów z różnych grup strukturalnych. Chemik 2011, 65, 667–674. [Google Scholar]
- Dyballa, M.; Obenaus, U.; Lang, S.; Gehring, B.; Traa, Y.; Koller, H.; Hunger, M. Brønsted sites and structural stabilization effect of acidic low-silica zeolite A prepared by partial ammonium exchange. Microporous Mesoporous Mater. 2015, 212, 110–116. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, S.; Hu, M.Y.; Bao, X.; Peden, C.H.F.; Hu, J. Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High-Field Solid-State NMR. J. Phys. Chem. C 2015, 119, 1410–1417. [Google Scholar] [CrossRef]
- Rakiewicz, E.F.; Mueller, K.T.; Jarvie, T.P.; Sutovich, K.J.; Roberie, T.G.; Peters, A.W. Solid-state NMR studies of silanol groups in mildly and highly dealuminated faujasites. Microporous Mater. 1996, 7, 81–88. [Google Scholar] [CrossRef]
- Stepanov, A.G. Basics of Solid-State NMR for Application in Zeolite Science. In Zeolites and Zeolite-Like Materials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 137–188. [Google Scholar] [CrossRef]
- Beta, I.A.; Hunger, B.; Böhlmann, W.; Jobic, H. Dissociative Adsorption of Water in CaNaA Zeolites Studied by TG, DRIFTS and 1H and 27Al MAS NMR Spectroscopy. Microporous Mesoporous Mater. 2005, 79, 69–78. [Google Scholar] [CrossRef]
- Freude, D.; Haase, J.; Pfeifer, H.; Prager, D.; Scheler, G. Extra-framework aluminium in thermally treated zeolite CaA. Chem. Phys. Lett. 1985, 114, 143–146. [Google Scholar] [CrossRef]
- Sun, J.; Fang, H.; Ravikovitch, P.I.; Sholl, D.S. Understanding Dealumination Mechanisms in Protonic and Cationic Zeolites. J. Phys. Chem. C 2020, 124, 668–676. [Google Scholar] [CrossRef]
- Starke, A.; Pasel, C.; Bläker, C.; Eckardt, T.; Zimmermann, J.; Bathen, D. Impact of Na+and Ca2+ Cations on the Adsorption of H2S on Binder-Free LTA Zeolites. Adsorpt. Sci. Technol. 2021, 2021, 5531974. [Google Scholar] [CrossRef]
- Jänchen, J.; Stach, H.; Hellwig, U. Water sorption in faujasite- and chabazite type zeolites of varying lattice composition for heat storage applications. Stud. Surf. Sci. Catal. 2008, 174, 599–602. [Google Scholar]
- Ruthven, D.M. Diffusion in Type A Zeolites: New Insights from Old Data. Microporous Mesoporous Mater. 2012, 162, 69–79. [Google Scholar] [CrossRef]
Name-C(EDTA), mmol/L | Relative Crystallinity, % | Si/Al ± 0.04 | Naremoved, % ±2% | Alremoved, % ±2% | Caremoved, % ±2% |
---|---|---|---|---|---|
Z4A | 100 | 1.01 | 0 | 0 | - |
Z4A-8 | 81 | 1.03 | 14 | 0 | - |
Z4A-17 | 74 | 1.03 | 17 | 2 | - |
Z4A-34 | 45 | 1.23 | 39 | 17 | - |
Z5A | 100 | 1.04 | 0 | 0 | 0 |
Z5A-8 | 82 | 1.10 | 36 | 2 | 0 |
Z5A-17 | 75 | 1.15 | 52 | 7 | 0 |
Z5A-34 | 58 | 1.28 | 72 | 19 | 12 |
Name-C(EDTA), mmol/L | SBET, m2/g | SEXT, m2/g | VTOT, cm3/g | VMIC, cm3/g | VMES, cm3/g | Average Pore Diameter, nm |
---|---|---|---|---|---|---|
Z4A-34 | 103 | 103 | 0.19 | 0 | 0.19 | 7.5 |
Z5A | 602 | 64 | 0.29 | 0.25 | 0.04 | 1.9 |
Z5A-8 | 561 | 105 | 0.29 | 0.21 | 0.08 | 2.1 |
Z5A-17 | 502 | 128 | 0.30 | 0.19 | 0.11 | 2.3 |
Z5A-34 | 418 | 142 | 0.35 | 0.13 | 0.22 | 3.4 |
Name-C(EDTA), mmol/L | TMAX, °C | QINT, kJ/g |
---|---|---|
Z4A | 131 | 0.30 |
Z4A-8 | 138 | 0.31 |
Z4A-17 | 142 | 0.33 |
Z4A-34 | 122 | 0.17 |
Z5A | 173 | 0.58 |
Z5A-8 | 178 | 0.59 |
Z5A-17 | 194 | 0.62 |
Z5A-34 | 175 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volavšek, J.; Pliekhov, O.; Pliekhova, O.; Mali, G.; Zabukovec Logar, N. Study of Water Adsorption on EDTA-Modified LTA Zeolites. Nanomaterials 2022, 12, 1352. https://doi.org/10.3390/nano12081352
Volavšek J, Pliekhov O, Pliekhova O, Mali G, Zabukovec Logar N. Study of Water Adsorption on EDTA-Modified LTA Zeolites. Nanomaterials. 2022; 12(8):1352. https://doi.org/10.3390/nano12081352
Chicago/Turabian StyleVolavšek, Janez, Oleksii Pliekhov, Olena Pliekhova, Gregor Mali, and Nataša Zabukovec Logar. 2022. "Study of Water Adsorption on EDTA-Modified LTA Zeolites" Nanomaterials 12, no. 8: 1352. https://doi.org/10.3390/nano12081352
APA StyleVolavšek, J., Pliekhov, O., Pliekhova, O., Mali, G., & Zabukovec Logar, N. (2022). Study of Water Adsorption on EDTA-Modified LTA Zeolites. Nanomaterials, 12(8), 1352. https://doi.org/10.3390/nano12081352