Development of a Simultaneous Process of Surface Modification and Pd Nanoparticle Immobilization of a Polymer Substrate Using Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Immobilization of Pd on Substrates
2.2. Material Characterization
2.3. Electroless Plating Process
2.4. Electroplating Process
2.5. Adhesion Strength Test
3. Results
3.1. Characterization of Pd/ABS
3.2. Electroless Cu Plating of Pd/ABS
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, B.Q.; Xiao, L.; Hu, S.F.; Peng, J.; Zhang, H.; Wang, M.W. Optimization and kinetics of electroless Ni–P–B plating of quartz optical fiber. Opt. Mater. 2009, 31, 1532–1539. [Google Scholar] [CrossRef]
- Nicolas-Debarnot, D.; Pascu, M.; Vasile, C.; Poncin-Epaillard, F. Influence of the polymer pre-treatment before its electroless metallization. Surf. Coat. Technol. 2006, 200, 4257–4265. [Google Scholar] [CrossRef]
- Zabetakis, D.; Dressick, W.J. Selective Electroless Metallization of Patterned Polymeric Films for Lithography Applications. ACS Appl. Mater. Interfaces 2009, 1, 4–25. [Google Scholar] [CrossRef]
- McCaskie, J.E. Plating on plastics: A survey of mechanisms for adhering metal films to plastic surfaces. Met. Finish. 2006, 5, 31–39. [Google Scholar] [CrossRef]
- Gui-xiang, W.; Ning, L.; Hui-li, H.; Yuan-chun, Y. Process of direct copper plating on ABS plastics. Appl. Surf. Sci. 2006, 253, 480–484. [Google Scholar] [CrossRef]
- Charbonnier, M.; Romand, M. Polymer pretreatments for enhanced adhesion of metals deposited by the electroless process. Int. J. Adhes. Adhes. 2003, 23, 277–285. [Google Scholar] [CrossRef]
- Pei-Chi, Y. Improved ABS plastic activating treatment for electroless copper plating. Polymer 1995, 36, 3399–3400. [Google Scholar] [CrossRef]
- Magallón Cacho, L.; Pérez Bueno, J.J.; Meas Vong, Y.; Stremsdoerfer, G.; Espinoza Beltrán, F.J.; Martínez Vega, J. Novel green process to modify ABS surface before its metallization: Optophysic treatment. J. Coat. Technol. Res. 2015, 12, 313–323. [Google Scholar] [CrossRef]
- Abenojar, J.; Torregrosa-Coque, R.; Martínez, M.A.; Martín-Martínez, J.M. Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. Surf. Coat. Technol. 2009, 203, 2173–2180. [Google Scholar] [CrossRef]
- Nomura, T.; Nakagawa, H.; Tashiro, K.; Umeda, Y.; Honma, H.; Takai, O. Metallisation on ABS plastics using fine-bubbles low ozonated water complying with REACH regulations. Trans. Inst. Met. Finish. 2016, 94, 322–327. [Google Scholar] [CrossRef]
- Yang, Z.; He, Y.; Li, Z.; Li, N.; Wang, Z. Adhesion Improvement of ABS Resin to Electroless Copper by H2SO4–MnO2 Colloid with Ultrasound-Assisted Treatment. J. Adhes. Sci. Technol. 2011, 25, 1211–1221. [Google Scholar] [CrossRef]
- Zhao, W.; Ding, J.; Wang, Z. Improvement in the Etching Performance of the Acrylonitrile–Butadiene–Styrene Resin by MnO2–H3PO4–H2SO4 Colloid. Langmuir 2013, 29, 5968–5973. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, Q.; Li, L.; Li, X.; Wang, Z. Surface modification of ABS by photocatalytic treatment for electroless copper plating. J. Adhes. Sci. Technol. 2014, 28, 499–511. [Google Scholar] [CrossRef]
- Teixeira, L.A.C.; Santini, M.C. Surface conditioning of ABS for metallization without the use of chromium baths. J. Mater. Process. Technol. 2005, 170, 37–41. [Google Scholar] [CrossRef]
- Tengsuwan, S.; Ohshima, M. Environmentally benign electroless nickel plating using supercritical carbon-dioxide on hydrophilically modified acrylonitrile–butadiene–styrene. Appl. Surf. Sci. 2014, 311, 189–200. [Google Scholar] [CrossRef]
- Seino, S.; Kinoshita, T.; Nakagawa, T.; Kojima, T.; Taniguci, R.; Okuda, S.; Yamamoto, T.A. Radiation induced synthesis of gold/iron-oxide composite nanoparticles using high-energy electron beam. J. Nanopart. Res. 2008, 10, 1071–1076. [Google Scholar] [CrossRef]
- Yamamoto, T.A.; Kageyama, S.; Seino, S.; Nitani, H.; Nakagawa, T.; Horioka, R.; Honda, Y.; Ueno, K.; Daimon, H. Methanol oxidation catalysis and substructure of PtRu/C bimetallic nanoparticles synthesized by a radiolytic process. Appl. Catal. A Gen. 2011, 396, 68–75. [Google Scholar] [CrossRef]
- Ohkubo, Y.; Aoki, T.; Seino, S.; Mori, O.; Ito, I.; Endo, K.; Yamamura, K. Radiolytic Synthesis of Pt-Particle/ABS Catalysts for H2O2 Decomposition in Contact Lens Cleaning. Nanomaterials 2017, 7, 235. [Google Scholar] [CrossRef] [Green Version]
- Belloni, J. Nucleation, growth and properties of nanoclusters studied by radiation chemistry: Application to catalysis. Catal. Today 2006, 113, 141–156. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Borben, K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Chastain, J., Ed.; Perkin-Elmer Corporation, Physical Electronic Division: Eden Praire, MN, USA, 1992; pp. 118–119. [Google Scholar]
- Simon, B.; Bouyer, C.; Sio, S.D.; Berthon, C.; Boubals, N.; Miserque, F.; Brackx, E.; Raymond, N.; Chagnes, A.; Berthon, L. Characterization of palladium species after γ-irradiation of a TBP–alkane–Pd(NO3)2 system. RSC Adv. 2018, 8, 21513–21527. [Google Scholar] [CrossRef] [Green Version]
- Mazalov, L.N.; Trubina, S.V.; Kryuchkova, N.A.; Tarasenko, O.A.; Trubin, S.V.; Zharkova, G.I. X-ray photoelectron study of electron density distribution in palladium(II) β-diketonate complexes. J. Struct. Chem. 2007, 48, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Mizukoshi, Y.; Tsuru, Y.; Tominaga, A.; Seino, S.; Masahashi, N.; Tanabe, S.; Yamamoto, T.A. Sonochemical immobilization of noble metal nanoparticles on the surface of maghemite: Mechanism and morphological control of the products. Ultrason. Sonoch. 2008, 15, 875–880. [Google Scholar] [CrossRef]
- Liu, P.; Peng, J.; Chen, Y.; Liu, M.; Tang, W.; Guo, Z.-H.; Yue, K. A general and robust strategy for in-situ templated synthesis of patterned inorganic nanoparticle assemblies. Giant 2021, 8, 100076. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uegaki, N.; Seino, S.; Takagi, Y.; Ohkubo, Y.; Nakagawa, T. Development of a Simultaneous Process of Surface Modification and Pd Nanoparticle Immobilization of a Polymer Substrate Using Radiation. Nanomaterials 2022, 12, 1463. https://doi.org/10.3390/nano12091463
Uegaki N, Seino S, Takagi Y, Ohkubo Y, Nakagawa T. Development of a Simultaneous Process of Surface Modification and Pd Nanoparticle Immobilization of a Polymer Substrate Using Radiation. Nanomaterials. 2022; 12(9):1463. https://doi.org/10.3390/nano12091463
Chicago/Turabian StyleUegaki, Naoto, Satoshi Seino, Yuji Takagi, Yuji Ohkubo, and Takashi Nakagawa. 2022. "Development of a Simultaneous Process of Surface Modification and Pd Nanoparticle Immobilization of a Polymer Substrate Using Radiation" Nanomaterials 12, no. 9: 1463. https://doi.org/10.3390/nano12091463
APA StyleUegaki, N., Seino, S., Takagi, Y., Ohkubo, Y., & Nakagawa, T. (2022). Development of a Simultaneous Process of Surface Modification and Pd Nanoparticle Immobilization of a Polymer Substrate Using Radiation. Nanomaterials, 12(9), 1463. https://doi.org/10.3390/nano12091463