Harmonic Generation in Biased Semiconductor Superlattices
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Clerici, M.; Peccianti, M.; Schmidt, B.E.; Caspani, L.; Shalaby, M.; Giguère, M.; Lotti, A.; Couairon, A.; Légaré, F.; Ozaki, T.; et al. Wavelength Scaling of Terahertz Generation by Gas Ionization. Phys. Rev. Lett. 2013, 110, 253901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, R.R.; Portnoi, M.E. Guided modes and terahertz transitions for two-dimensional Dirac fermions in a smooth double-well potential. Phys. Rev. A 2020, 102, 052229. [Google Scholar] [CrossRef]
- Villegas, K.; Kusmartsev, F.; Luo, Y.; Savenko, I. Optical transistor for an amplification of radiation in a broadband THz domain. Phys. Rev. Lett. 2020, 124, 087701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, M.F.; Shulika, O. (Eds.) Terahertz and Mid Infrared Radiation: Generation, Detection and Applications, NATO Science for Peace and Security Series B: Physics and Biophysics; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 978-94-007-0768-9. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.F.; Shulika, O. (Eds.) For a Review See Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz), NATO Science for Peace and Security Series-B: Physics and Biophysics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.; Hoffmann, M.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Wacker, A. Semiconductor superlattices: A model system for nonlinear transport. Phys. Rep. 2002, 357, 1–111. [Google Scholar] [CrossRef] [Green Version]
- Wacker, A.; Jauho, A.-P. Quantum Transport: The Link between Standard Approaches in Superlattices. Phys. Rev. Lett. 1998, 80, 369–372. [Google Scholar] [CrossRef] [Green Version]
- Wacker, A.; Jauho, A.-P.; Zeuner, S.; Allen, S.J. Sequential tunneling in doped superlattices: Fingerprints of impurity bands and photon-assisted tunneling. Phys. Rev. B 1997, 56, 13268–13278. [Google Scholar] [CrossRef] [Green Version]
- Winge, D.O.; Franckié, M.; Wacker, A. Superlattice gain in positive differential conductivity region. AIP Adv. 2016, 6, 045025. [Google Scholar] [CrossRef] [Green Version]
- Alfadhli, S.A.; Savel’ev, S.E.; Kusmartsev, F.V. Dirac-Weyl points’ manipulation using linear polarized laser field in Floquet crystals for various Graphene superlattices. In Proceedings of the Nanophotonics and Micro/Nano Optics International Conference 2017, Barcelona, Spain, 13–15 September 2017; IOP Publishing: Bristol, UK, 2018; Volume 961, p. 012012. [Google Scholar]
- Pereira, M.F. Analytical Expressions for Numerical Characterization of Semiconductors per Comparison with Luminescence. Materials 2017, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Liu, Y.; Luo, Y.; Kusmartsev, F.V.; Kusmartseva, A. Perfect Impedance Matching with Meta-Surfaces Made of Ultra-Thin Metal Films: A Phenomenological Approach to the Ideal THz Sensors. Materials 2020, 13, 5417. [Google Scholar] [CrossRef]
- Vaks, V. High-Precise Spectrometry of the Terahertz Frequency Range: The Methods, Approaches and Applications. J. Infrared Millim. Terahertz Waves 2012, 33, 43–53. [Google Scholar] [CrossRef]
- Pavelyev, D.G.; Skryl, A.S.; Bakunov, M.I. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb. Opt. Lett. 2014, 39, 5669–5672. [Google Scholar] [CrossRef] [PubMed]
- Razeghi, M.; Lu, Q.Y.; Bandyopadhyay, N.; Zhou, W.; Heydari, D.; Bai, Y.; Slivken, S. Quantum cascade lasers: From tool to product. Opt. Express 2015, 23, 8462–8475. [Google Scholar] [CrossRef] [PubMed]
- Mączka, M. Effective Simulations of Electronic Transport in 2D Structures Based on Semiconductor Superlattice Infinite Model. Electronics 2020, 9, 1845. [Google Scholar] [CrossRef]
- Schmielau, T.; Pereira, M.F. Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Appl. Phys. Lett. 2009, 95, 231111. [Google Scholar] [CrossRef]
- Pereira, J.M.F.; Lee, S.-C.; Wacker, A. Controlling many-body effects in the midinfrared gain and terahertz absorption of quantum cascade laser structures. Phys. Rev. B 2004, 69, 205310. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.F.; Wenzel, H. Interplay of Coulomb and nonparabolicity effects in the intersubband absorption of electrons and holes in quantum wells. Phys. Rev. B 2004, 70, 205331. [Google Scholar] [CrossRef]
- Pereira, M.F. Intervalence transverse-electric mode terahertz lasing without population inversion. Phys. Rev. B 2008, 78, 245305. [Google Scholar] [CrossRef]
- Pereira, M.F.; Tomić, S. Intersubband gain without global inversion through dilute nitride band engineering. Appl. Phys. Lett. 2011, 98, 061101. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.F. The linewidth enhancement factor of intersubband lasers: From a two-level limit to gain without inversion conditions. Appl. Phys. Lett. 2016, 109, 222102. [Google Scholar] [CrossRef] [Green Version]
- Winge, D.O.; Franckie, M.; Verdozzi, C.; Wacker, A.; Pereira, M.F. Simple electron-electron scattering in non-equilibrium Green’s function simulations. In Proceedings of the Progress in Non-equilibrium Green’s Functions (PNGF VI), Lund, Sweden, 17–21 August 2015; IOP Publishing: Bristol, UK, 2016; Volume 696, p. 012013. [Google Scholar]
- Wacker, A.; Lindskog, M.; Winge, D. Nonequilibrium Green’s Function Model for Simulation of Quantum Cascade Laser Devices Under Operating Conditions. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1–11. [Google Scholar] [CrossRef]
- Franckié, M.; Faist, J. Bayesian Optimization of Terahertz Quantum Cascade Lasers. J. Phys. Rev. Appl. 2020, 13, 034025. [Google Scholar] [CrossRef] [Green Version]
- Gajić, A.; Radovanović, J.; Vuković, N.; Milanović, V.; Boiko, D.L. Theoretical approach to quantum cascade micro-laser broadband multimode emission in strong magnetic fields. Phys. Lett. A 2021, 387, 127007. [Google Scholar] [CrossRef]
- Vukovic, N.; Radovanovic, J.; Milanovic, V.; Boiko, D.L. Numerical study of Risken–Nummedal–Graham–Haken instability in mid-infrared Fabry–Pérot quantum cascade lasers. Opt. Quantum Electron. 2020, 52, 91. [Google Scholar] [CrossRef]
- Pereira, M.F.; Zubelli, J.; Winge, D.; Wacker, A.; Rodrigues, A.; Anfertev, V.; Vaks, V. Theory and measurements of harmonic generation in semiconductor superlattices with applications in the 100 GHz to 1 THz range. Phys. Rev. B 2017, 96, 045306. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.; Apostolakis, A. Combined Structural and Voltage Control of Giant Nonlinearities in Semiconductor Superlattices. Nanomaterials 2021, 11, 1287. [Google Scholar] [CrossRef]
- Schevchenko, Y.; Apostolakis, A.; Pereira, M.F. Recent Advances in Superlattice Frequency Multipliers. In Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures against Explosives and CBRN.; Pereira, M.F., Apostolakis, A., Eds.; NATO Science for Peace and Security Series B: Physics and Biophysics; Springer: Dordrecht, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Waschke, C.; Roskos, H.G.; Schwedler, R.; Leo, K.; Kurz, H.; Köhler, K. Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett. 1993, 70, 3319–3322. [Google Scholar] [CrossRef]
- Winnerl, S.; Schomburg, E.; Brandl, S.; Kus, O.; Renk, K.F.; Wanke, M.C.; Allen, S.J.; Ignatov, A.A.; Ustinov, V.; Zhukov, A.; et al. Frequency doubling and tripling of terahertz radiation in a GaAs/AlAs superlattice due to frequency modulation of bloch oscillations. Appl. Phys. Lett. 2000, 77, 1259. [Google Scholar] [CrossRef]
- Schomburg, E.; Grenzer, J.; Hofbeck, K.; Dummer, C.; Winnerl, S.; Ignatov, A.; Renk, K.; Pavel’Ev, D.; Koschurinov, J.; Melzer, B.; et al. Superlattice frequency multiplier for generation of submillimeter waves. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 724–728. [Google Scholar] [CrossRef]
- Ignatov, A.A.; Schomburg, E.; Grenzer, J.; Renk, K.F.; Dodin, E.P. THz-field induced nonlinear transport and dc voltage generation in a semiconductor superlattice due to Bloch oscillations. Eur. Phys. J. B 1995, 98, 187–195. [Google Scholar] [CrossRef]
- Romanov, Y.A.; Romanova, Y. Bloch oscillations in superlattices: The problem of a terahertz oscillator. Semiconductors 2005, 39, 147. [Google Scholar] [CrossRef]
- Le Person, H.; Minot, C.; Boni, L.; Palmier, J.F.; Mollot, F. Gunn oscillations up to 20 GHz optically induced in GaAs/AlAs superlattice. Appl. Phys. Lett. 1992, 60, 2397–2399. [Google Scholar] [CrossRef]
- Schomburg, E.; Blomeier, T.; Hofbeck, K.; Grenzer, J.; Brandl, S.; Lingott, I.; Ignatov, A.A.; Renk, K.F.; Pavel’Ev, D.G.; Koschurinov, Y.; et al. Current oscillation in superlattices with different miniband widths. Phys. Rev. B 1998, 58, 4035–4038. [Google Scholar] [CrossRef]
- Makarov, V.V.; Hramov, A.E.; Koronovskii, A.A.; Alekseev, K.N.; Maximenko, V.A.; Greenaway, M.T.; Fromhold, T.M.; Moskalenko, O.I.; Balanov, A.G. Sub-terahertz amplification in a semiconductor superlattice with moving charge domains. Appl. Phys. Lett. 2015, 106, 043503. [Google Scholar] [CrossRef] [Green Version]
- Meier, T.; Von Plessen, G.; Thomas, P.; Koch, S.W. Coherent electric-field effects in semiconductors. Phys. Rev. Lett. 1994, 73, 902. [Google Scholar] [CrossRef]
- Dignam, M.M. Excitonic Bloch oscillations in a terahertz field. Phys. Rev. B 1999, 59, 5770–5783. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, A.; Yang, L.; Dignam, M.M. Tunable terahertz amplification in optically excited biased semiconductor superlattices: Influence of excited excitonic states. Phys. Rev. B 2008, 77, 115307. [Google Scholar] [CrossRef]
- Pereira, M.F.; Anfertev, V.; Zubelli, J.P.; Vaks, V. THz Generation by GHz Multiplication in Superlattices. J. Nanophotonics 2017, 11, 046022. [Google Scholar] [CrossRef]
- Apostolakis, A.; Pereira, M.F. Controlling the harmonic conversion efficiency in semiconductor superlattices by interface roughness design. AIP Adv. 2019, 9, 015022. [Google Scholar] [CrossRef] [Green Version]
- Apostolakis, A.; Pereira, M.F. Potential and limits of superlattice multipliers coupled to different input power sources. J. Nanophotonics 2019, 13, 036017. [Google Scholar] [CrossRef]
- Apostolakis, A.; Pereira, M.F. Superlattice nonlinearities for Gigahertz-Terahertz generation in harmonic multipliers. Nanophotonics 2020, 9, 3941–3952. [Google Scholar] [CrossRef]
- Pereira, M.F.; Anfertev, V.; Shevchenko, Y.; Vaks, V. Giant controllable gigahertz to terahertz nonlinearities in superlattices. Sci. Rep. 2020, 10, 15950. [Google Scholar] [CrossRef]
- Prineas, J.P.; Johnston, W.J.; Yildirim, M.; Zhao, J.; Smirl, A.L. Tunable slow light in Bragg-spaced quantum wells. Appl. Phys. Lett. 2006, 89, 241106. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Liu, H.; Wang, C.; Wei, G.; Fang, C.; Wang, H.; Geng, C.; Liu, S.; Li, P.; et al. Generation and Control of Terahertz Spin Currents in Topology-Induced 2D Ferromagnetic Fe3GeTe2|Bi2Te3 Heterostructures. Adv. Mater. 2022, 34, 2106172. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; An, Q.; Ye, X.; Yu, B.H.; Zhang, Q.H.; Sun, F.; Zhang, Q.Y.; Yang, F.; Guo, J.; Zhao, J. Second harmonic generation in AB-type LaTiO3/SrTiO3 superlattices. Nano Energy 2021, 82, 105752. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.F. Harmonic Generation in Biased Semiconductor Superlattices. Nanomaterials 2022, 12, 1504. https://doi.org/10.3390/nano12091504
Pereira MF. Harmonic Generation in Biased Semiconductor Superlattices. Nanomaterials. 2022; 12(9):1504. https://doi.org/10.3390/nano12091504
Chicago/Turabian StylePereira, Mauro Fernandes. 2022. "Harmonic Generation in Biased Semiconductor Superlattices" Nanomaterials 12, no. 9: 1504. https://doi.org/10.3390/nano12091504
APA StylePereira, M. F. (2022). Harmonic Generation in Biased Semiconductor Superlattices. Nanomaterials, 12(9), 1504. https://doi.org/10.3390/nano12091504